SQUARE ROOTS OF QUASIREGULAR ELEMENTS IN A RING, ARE QUASIREGULAR

First recall some well known exercises and definition (e.g., [2], 4.1, 4.2) which are stated for R, a ring possibly without 1 .

E1. Define $a \circ b=a+b-a b$. Show that this binary operation is associative, and (R, \circ) is a monoid with zero as the identity element.

D1. An element $a \in R$ is called left (or right) quasi-regular if a has a left (resp. right) inverse in the monoid (R, \circ).

E2. Show that, if R has an identity, the map $\phi:(R, \circ) \rightarrow(R, \times)$, defined by $\phi(a)=1-a$ is a monoid isomorphism.

In this case, an element a is left (right) quasi-regular iff $1-a$ has a left (resp. right) inverse with respect to ring multiplication.

In the sequel we give two solutions for
Exercise 1. If a^{2} is left (or right) quasi-regular, so is a.
Adapted from [1], we first give the easy
solution in a ring possibly without 1 .
Suppose a^{2} is (say) right quasi-regular. There is $b \in R$ such that $a^{2} \circ b=0$. Notice that $a^{2}=a \circ(-a)$. Hence

$$
a \circ((-a) \circ b) \stackrel{\text { assoc }}{=}(a \circ(-a)) \circ b=a^{2} \circ b=0
$$

so $(-a) \circ b$ is a right inverse for a in the monoid (R, \circ).
If R has identity, and we use the characterization, a is right quasi-regular iff $1-a$ has a right inverse,

Solution in a ring with identity.
Suppose a^{2} is right quasi-regular, i.e., there exists $b \in R$ such that $\left(1-a^{2}\right) b=1$. Then $(1-a)(1+a) b=1$ so $1-a$ has a right inverse too.

Hence a is right quasi-regular.
Remark. Of course, the solutions correspond one another by the monoid isomorphism ϕ.

References

[1] I. Kaplansky Fields and rings. University of Chicago Press; 1st edition (1969), 198 p.
[2] T. Y. Lam Exercises in classical ring theory. Problem Books in Math. Springer (1995).

