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Trace 1, 2× 2 matrices over principal ideal domains are
exchange

GRIGORE CĂLUGĂREANU and HORIA F. POP

ABSTRACT. We prove that trace 1 matrices over principal ideal domains are exchange and characterize 2× 2

exchange matrices over commutative domains. In addition, we emphasize large classes of not exchange 2 × 2

and 3× 3 integral matrices.

1. INTODUCTION

An element a in a unital ring R is called clean ([8]) if a = e+ u with idempotent e and
unit u and e-clean, if we intend to emphasize the idempotent. A clean element is called
trivial if its decomposition uses a trivial idempotent i.e., 0 or 1. These are the 0-clean and
1-clean elements, respectively.

Also in [8], exchange elements (called suitable) were defined into four equivalent ways.
One of these is: an element a in a ring R is (left) exchange if there is an idempotent e such
that e− a ∈ R(a− a2). Every left exchange element is also right exchange and conversely.
Clean elements are exchange ([8]).

Clean 2 × 2 integral matrices are characterized (see e.g. [2]) by pairs of one quadratic
Diophantine equation (in two variables) and one linear Diophantine equation (in three
variables). Since nowadays such equations are instantly solved by computer (see [1], [9]
respectively [7]), it would be useful to have a criterion (checkable by computer) to decide
on the exchange property of a matrix inM2(Z).

In this note we characterize the exchange 2 × 2 matrices over commutative domains. It
turns out that these are still characterized by pairs of conditions: but now one quadratic
equation (in three variables) and one linear equation (in three or four variables).

Moreover, we prove that every trace 1, 2 × 2 matrix over a principal ideal domain is
exchange.

In addition, we prove two special results, which mainly permit to emphasize large
classes of not exchange 2× 2 but also 3× 3 integral matrices.

Whenever it is more convenient, we will use the widely accepted shorthand “iff” for
“if and only if” in the text. All rings we consider are unital.

2. EXCHANGE 2× 2 INTEGRAL MATRICES

First notice that an element a in a ring R is exchange iff there is an element m ∈ R such
that c := a+m(a− a2) is an idempotent. Observe that if this idempotent is trivial, then a
is clean and so exchange. More precisely, we have the following

Lemma 2.1. Let a be an element in a Dedekind finite ringR. There exists an elementm ∈ R such
that

(i) a+m(a− a2) = 0 iff 1− a is a unit (i.e. 1-clean);
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(ii) a+m(a− a2) = 1 iff a is a unit (i.e. 0-clean).

Proof. The equality can be written as (i) (1 −ma)(1 − a) = 1 and (ii) [1 +m(1 − a)]a = 1,
respectively, so since R is Dedekind finite, 1−a is a unit, or a is a unit. Conversely, if 1−a
is a unit, we can chose m = (1− a)−1, and if a is a unit, we can chose m = a−1. �

Remark 2.1. Notice that tripotents, i.e. elements f ∈ R such that f = f3 are (strongly)
clean (see e.g. [3]) and so exchange.

In this section, R denotes a commutative domain. Notice that a 2 × 2 matrix E is
idempotent iff E ∈ {02, I2}, or else Tr(E) = 1, det(E) = 0. Also observe that, since left
exchange elements are also right exchange and conversely, a matrix is exchange iff so is
its transpose.

Let A be a 2× 2 matrix over R. By Cayley-Hamilton Theorem,

A−A2 = (1− Tr(A))A+ det(A)I2.

If Tr(A) = 1, and R is a principal ideal domain, we were able to prove the nice result
(theorem) stated in the title.

For the proof we need the following

Lemma 2.2. Let a and c be elements in a principal ideal domain R, with c 6= 0. The equation

(ax− 1)[(a+ 1)x− 1] = cy

has solutions x, y ∈ R.

Proof. Let c = c1c2 where c1 is the product of the primes dividing c that do not divide
a, and c2 is the product of the primes dividing c that do divide a. Hence we know the
following:

(i) gcd(c1, c2) = 1;
(ii) gcd(c1, a) = 1;
(iii) gcd(c2, a+ 1) = 1.
By Bézout’s identity for (ii), there are elements x1, z1 such that ax1 + c1z1 = 1 and so

ax1 ≡ 1 (mod c1). Similarly for (iii) there are elements x2, z2 such that (a+1)x2+ c2z2 = 1
and so (a+ 1)x2 ≡ 1 (mod c2).

Owing to (i), by the Chinese Remainder Theorem there is an element x such that x ≡ x1
(mod c1) and x ≡ x2 (mod c2). Hence ax ≡ 1 (mod c1), (a + 1)x ≡ 1 (mod c2). We can
rewrite this as ax−1 = c1y1, (a+1)x−1 = c2y2 where y1, y2 ∈ R. Let y = y1y2. Multiplying
the two equations we obtain the claim in the statement. �

Theorem 2.1. Every trace 1, 2× 2 matrix over a principal ideal domain R, is exchange.

Proof. As seen above, A − A2 = det(A)I2. By definition, A is exchange iff there is a 2 × 2
matrix M such that C := A+M(A− A2) = A+ det(A)M is idempotent. We denote mij ,
1 ≤ i, j ≤ 2 the entries of M .

We first show that, for every trace 1 matrix A =

[
a+ 1 b
c −a

]
with c 6= 0, there exists

a matrix M , with m22 = −m11 and m21 = 0 such that C is a nontrivial idempotent, i.e.,
Tr(C) = 1 and det(C) = 0. In what follows, we can suppose det(A) 6= 0. Otherwise, A is
an idempotent, and so clean and exchange.

A simple computation gives Tr(C) = a + 1 + det(A)m11 − a + det(A)m22 = 1 iff
det(A)(m11 + m22) = 0 and detC = 0 iff (a + 1 + det(A)m11)(−a + det(A)m22) − (b +
det(A)m12)(c+ det(A)m21) = 0.
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Tr(C) = 1 holds if m22 = −m11, and if we replace m22 = −m11 and m21 = 0 in the
second equality we obtain (dividing by det(A))

1− (2a+ 1)m11 − det(A)m2
11 − cm12 = 0.

Here −det(A) = a(a + 1) + bc and we should show that for any a, c ∈ R, there is an m11

such that c divides a(a+1)m2
11−(2a+1)m11+1 = (am11−1)[(a+1)m11−1]. Equivalently,

the quadratic Diophantine equation

(ax− 1)[(a+ 1)x− 1]− cy = 0

has solutions for any a, c ∈ R. Since c 6= 0, the existence follows from the previous lemma.
The remaining case, using our previous observation on the transpose of an exchange

matrix (if c = 0 but b 6= 0), are the diagonal trace 1, 2 × 2 matrices, A =

[
a+ 1 0
0 −a

]
.

Since for a ∈ {0,−1} we obtain E11, E22 which are idempotents, so clean and exchange,
we may assume a /∈ {0,−1} (and so det(A) 6= 0). We preserve m22 = −m11 and so
det(C) = 0 reduces to

1− (2a+ 1)m11 + a(a+ 1)(m2
11 +m12m21) = 0.

Now we chosem11 = 2a+1 andm12m21 = −(2a−1)(2a+3), and the proof is complete. �

Next, we prove a characterization for exchange matrices A with Tr(A) =: t 6= 1 over
any commutative domain. To simplify the writing we shall use the following notations:
α = det(A) + (1− t)(a+ t), β = (1− t)c, γ = (1− t)b and δ = det(A)− (1− t)a.

Theorem 2.2. A trace t 6= 1, 2× 2 matrix A =

[
a+ t b
c −a

]
is exchange over a commutative

domain R iff A is a unit, or I2 −A is a unit, or A is an idempotent, or
(i) if β = 0, there exist m11,m12,m21 ∈ R such that

(a+ t+ αm11)(−a+ 1− t− αm11) = (b+ γm11 + δm12)αm21

and m22 with 1− t = αm11 + γm21 + δm22.
(ii) if δ = 0, there exist m11,m21,m22 ∈ R such that

(a+ 1− γm21)(−a+ γm21) = (b+ γm11)(c+ αm21 + βm22)

and m12 with 1− t = αm11 + βm12 + γm21.
(iii) if β 6= 0 6= δ, there exist m11,m12,m21 ∈ R such that

δ(a+ t+ αm11 + βm12)[−a+ 1− t− (αm11 + βm12)] =

(b+ γm11 + δm12){cδ + αδm21 + β[1− t− (αm11 + βm12 + γm21)]}
and m22 with 1− t = αm11 + βm12 + γm21 + δm22.

Proof. As mentioned before A−A2 = (1− t)A+det(A)I2 and we have only to discuss the
case C is a nontrivial idempotent (otherwise, by Lemma 2.1, A is 0-clean or 1-clean).

Now C =[
a+ t b
c −a

]
+

[
m11 m12

m21 m22

] [
det(A) + (1− t)(a+ t) (1− t)b

(1− t)c det(A)− (1− t)a

]
and

Tr(C) = 1 iff (m11 +m22) det(A) + (1 − t)[m11(a + t) +m12c +m21b −m22a − 1] = 0,
and

det(C) = 0 iff [a+ t+m11 det(A) + (1− t)(m11(a+ t) +m12c)][−a+m22 det(A) + (1−
t)(m21b−m22a)] =

= [b+m12 det(A) + (1− t)(m11b−m12a)][c+m21 det(A) + (1− t)(m21(a+ t) +m22c)].
For the proof, we show that using Tr(C) = 1 we can always eliminate m22 or m12 from

the equality det(C) = 0, this way obtaining a quadratic equation, to be solved in R.
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Using the notations introduced above, Tr(C) = 1 is equivalent to αm11+βm12+γm21+
δm22 = 1− t and det(C) = 0 is equivalent to

(a+ t+ αm11 + βm12)(−a+ γm21 + δm22) = (b+ γm11 + δm12)(c+ αm21 + βm22)(∗∗)
We go into three cases.

(i) β = 0; since t 6= 1 this is equivalent to c = 0. Then we replace δm22 = 1− t− (αm11+
γm21) into

(a+ t+ αm11)(−a+ γm21 + δm22) = (b+ γm11 + δm12)αm21

and for any given m11, this is a quadratic equation in unknowns m12, m21.
(ii) δ = 0; this is equivalent to det(A) = (1 − t)a. Now we replace βm12 = 1 − t −

(αm11 + γm21) into

(a+ t+ αm11 + βm12)(−a+ γm21) = (b+ γm11)(c+ αm21 + βm22)

and for any given m11, this is a quadratic equation in unknowns m21, m22.
(iii) β 6= 0 6= δ; this is equivalent to c 6= 0 and det(A) 6= (1− t)a. In this case we multiply

by β, αm11 + βm12 + γm21 + δm22 = 1 − t and by δ the equality (∗∗). Now we replace
δm22 = 1− t− (αm11 + βm12 + γm21) and βδm22 = β[1− t− (αm11 + βm12 + γm21)] into

δ(a+ t+ αm11 + βm12)(−a+ γm21 + δm22) = (b+ γm11 + δm12)(cδ + αδm21 + βδm22)

and for any given m11, this is a quadratic equation in unknowns m12, m21.
The equations we obtain are displayed in the statement of the theorem. �

Example 2.1. 1) A =

[
3 3
0 −1

]
. For m11 = 0 we have to solve the quadratic equation

(3 − 2m12)m21 = 1. Among the solutions, if we chose (m12,m21) = (2,−1) we get M =[
0 2
−1 2

]
and C =

[
3 −1
6 −2

]
, an idempotent. The linear equation becomes 3m21 +

2m22 = 1, also verified by m21 = −1, m22 = 2. So A is exchange over any ring.

Example 2.2. A =

[
2 3
0 1

]
. Here det(A) = (1− t)a.

The linear equation is m11 + 3m21 = 1 which has no solution for m11 = 0, unless 3 is a
unit.

However, for m11 = 1 we have m21 = 0 and the linear equation is verified for any
m12, m22. The quadratic equation is 36m2

21 = 0, also verified by m21 = 0. Hence we can

chose M =

[
1 u
0 v

]
(arbitrary elements u, v) and C =

[
0 −3
0 1

]
is idempotent. So A is

exchange over any ring.

Example 2.3. A =

[
1 3
1 1

]
. Here c 6= 0 and det(A) 6= (1− t)a.

For m11 = 0 we have to solve the quadratic equation 3(1 − m12)(−2 + 6m21) = 0
with solution m12 = 1 and arbitrary m21, say (m12,m21) = (1, y). Then m22 = −y and

for M =

[
0 1
y −y

]
we obtain C =

[
0 0

1− 2y 1

]
, an idempotent. The linear equation

becomes −m12 − 3m21 − 3m22 = 1, also verified by m12 = 1,m21 = y,m22 = −y. So A is
exchange over any ring.

Example 2.4. Ak =

[
2k + 1 0

0 0

]
for any integer k. Here (i) amounts to

t(1− t)[1 + (1− t)m11](1− tm11) = 0.
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Since m11 = 1
t−1 ∈ Z only for t ∈ {0, 2} (which are not odd), and m11 = 1

t ∈ Z only for
t ∈ {±1}, such matrices are exchange only if t ∈ {±1}. Indeed, E11 is an idempotent, so
exchange and −E11 is exchange as tripotent. Hence all Ak, k /∈ {−1, 0} are not exchange
over Z.

Remark 2.2. 1) When checking for exchange a 2 × 2 matrix A, one should first verify
whetherA orA−I2 are invertible. If this fails then we use the previous (general) theorem.

For instance, for the matrix A =

[
1 3
0 1

]
(which is a unit) (ii) is not (always) applicable

(e.g. over Z). Indeed, by computation C =

[
1 3(1−m11)
0 1− 3m21

]
so Tr(C) = 2 − 3m21 6= 1

unless 3 is a unit. Actually, C = C2 iff the left column of M is
[

1
0

]
(arbitrary right

column) and so C = I2.
2) Related to our research, from [6] we recall

Corollary 2.1. LetR = M2(S) where S is any ring, and let A =

[
a b
c d

]
∈ R. If b or c is a

unit, then a is exchange in R.

It can be shown that if we replace b by any unit (or symmetrically c) in Theorem 2.2,
the equations there, have solutions. In order not to lengthen this paper we only discuss
the b is a unit case for t 6= 1, that is, using Theorem 2.2.

The linear equation is αm11+βm12+(1−t)bm21+δm22 = 1−twhich obviously admits
the solution m11 = m12 = m22 = 0 and m21 = b−1. It is easy to check that this solution
also verifies the quadratic equation and so for M = b−1E21, C = A + b−1E21(A − A2) is
an idempotent. Hence A is (indeed) exchange over any ring.

3. SPECIAL CHARACTERIZATIONS

In this section, in order to simplify the exposition, we deal with integral matrices. The
astute reader will easily realize how the results that follow may be generalized over prin-
cipal ideal domains.

We show how one can exploit the situation A−A2 =M2(nZ), for a positive n ≥ 2.
First we have the following

Proposition 3.1. Let n ∈ Z, n ≥ 2 and let A ∈
[
nZ+ 1 nZ
nZ nZ+ 1

]
⊂ M2(Z). Then A is

exchange iff A is a unit iff det(A) ∈ {±1}.

Proof. One way is clear. Conversely, supposeA is exchange. Notice thatA2∈
[
nZ+1 nZ
nZ nZ+1

]
and so A − A2 = nB for some B ∈ M2(Z). Then C = A +M(A − A2) = A + nMB and
so Tr(C) ∈ 2 + nZ.

If n=2,C is idempotent only if it is trivial (i.e. the trace is 0 or 2). ForA∈
[
2Z+1 2Z
2Z 2Z+1

]
we have I2 − A = 2S, M(I2 − A) = 2T , I2 +M(I2 − A) ∈

[
2Z+ 1 2Z
2Z 2Z+ 1

]
and so

C 6= 02 because C = [I2 +M(I2 − A)]A ∈
[

2Z+ 1 2Z
2Z 2Z+ 1

]
. In the remaining case,

C = [I2 +M(I2 −A)]A = I2, so A is a unit (we use Lemma 2.1).
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If n ≥ 3, again C is idempotent only if it is trivial. Now C 6= 02 follows from C ∈[
nZ+ 1 nZ
nZ nZ+ 1

]
, and so only C = I2 remains. Using again Lemma 2.1, A must be a

unit. �

Proposition 3.2. For n ∈ Z, n ≥ 2, let A ∈M2(nZ). The following conditions are equivalent
(i) A is exchange.
(ii) there is a matrix M such that A+M(A−A2) = 02.
(iii) A− I2 is a unit.
(iv) A is 1-clean.

Proof. (i) ⇒ (ii) Suppose A is exchange. By hypothesis, A, A2, A − A2, M(A − A2) and
C = A+M(A− A2), all belong toM2(nZ). Hence C 6= I2 and since Tr(C) is multiple of
n, that is 6= 1 (i.e. C is not nontrivial), the idempotent C = 02. (ii)⇒ (iii) Use Lemma 2.1.
(iii)⇒ (iv) and (iv)⇒ (i) are obvious. �

Corollary 3.2. If the entries of a 2 × 2 integral matrix A are not (collectively) coprime then A is
1-clean (i.e. A− I2 is a unit) or A is not exchange.

Corollary 3.3. Let A be an arbitrary 2 × 2 integral matrix and m ∈ Z, m /∈ {−1, 0, 1}̇. Then
mA is 1-clean or not exchange.

Example 3.5.
[

2 0
0 0

]
is I2-clean so exchange but

[
m 0
0 0

]
, for m ≥ 3 are not exchange

(this improves Example 4, p. 6).

Example 3.6. 2I2 is (I2-clean and so) exchange but mI2, for m ≥ 3 are not exchange.

Finally, we can now settle two special cases: the diagonal and the (upper) triangular 2×2
integral exchange matrices.

Proposition 3.3. A diagonal integral matrix A =

[
u 0
0 v

]
is exchange iff A = ±I2 or E11,

I2 + E22, or else u, v are coprime and of different parity, and if A =

[
2k + 1 0

0 2l

]
then there

exist integers m11, m12, m21 such that (1 − 2km11)[1 − (2k + 1)m11] = −2l(2l − 1)m12m21

and k(2k + 1)m11 + l(2l − 1)m22 = −(k + l). The case A =

[
2l 0
0 2k + 1

]
is recovered by

conjugation with
[

0 1
1 0

]
.

Proof. Computation shows that

C = A+M(A−A2) =

[
u[1 + (1− u)m11] v(1− v)m12

u(1− u)m21 v[1 + (1− v)m22]

]
and so Tr(C) = u[1 + (1 − u)m11] + v[1 + (1 − v)m22] and det(C) = uv[1 + (1 − u)m11 +
(1− v)m22 + (1− u)(1− v) det(M)].

If both u, v are even, A is not exchange by Corollary 3.2.
If both u, v are odd, A is not exchange by Proposition 3.1, excepting the units ±I2.

Since
[
u 0
0 v

]
is conjugate to

[
v 0
0 u

]
by
[

0 1
1 0

]
(the exchange property is invari-

ant to conjugations), in the remaining case, using again Corollary 3.2, we may suppose

A =

[
2k + 1 0

0 2l

]
has coprime entries, that is, gcd(2k + 1, 2l) = 1. In order to get a

characterization we need Theorem 2.2.
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Since b = c = 0, we also have β = γ = 0 and we can use case (i). With the corresponding
notations, u := a+t, v := −a, t = u+v, α = u(1−u) and δ = v(1−v). Then the Diophantine
equations become 1−u− v = u(1−u)m11 + v(1− v)m22 and u(1−u)[1+ (1−u)m11](1−
um11) = u(1− u)v(1− v)m12m21.

Since the case we deal with has odd u and even v, we can discard u = 0. For u = 1
(the equality holds for any m11,m12,m21) the linear equation amounts to 1− v = ±1, i.e.

v ∈ {0, 2}. These are the matrices E11 and
[

1 0
0 2

]
(e.g. M = I2 + E22).

So finally the problem is reduced to [1 + (1− u)m11](1− um11) = v(1− v)m12m21 and,
with the above notations (1−2km11)[1− (2k+1)m11] = −2l(2l−1)m12m21, together with
k(2k + 1)m11 + l(2l − 1)m22 = −(k + l). �

Example 3.7.
[

7 0
0 4

]
is not exchange. Here the linear equation 21m11 + 6m22 = −5 has

no solution, because gcd(21; 6) = 3 is not a divisor of 5.

Example 3.8.
[

7 0
0 2

]
is exchange. Now the linear equation is 21m11 −m22 = −4, which

has solutions. Form11 = 1, we get 30 = −2m12m21 orm12m21 = −15. Since δm22 = 1−t−

αm11 we obtain m22 = −17. For example, if M =

[
1 −3
5 −17

]
then C =

[
−35 6
−210 36

]
,

an idempotent.

Example 3.9. The matrices Al =

[
4l − 1 0

0 2l

]
, l /∈ {0, 1} are not exchange.

The linear equation k(2k+1)m11+ l(2l−1)m22 = −(k+ l) becomes (2l−1)(4l−1)m11+
l(2l−1)m22 = −(3l−1). Since gcd(4l−1; l) = 1 it follows that gcd((2l−1)(4l−1); (2l−1)l) =
2l − 1 and this (linear Diophantine) equation has solutions iff 2l − 1 divides 3l − 1. It is
easy to see that this happens only for l ∈ {0, 1}.

For l = 0, A0 = −E11 is a tripotent, so exchange, and for l = 1, A1 =

[
3 0
0 2

]
. For

M =

[
1 1
−1 −1

]
we get C =

[
−3 −2
6 4

]
, an idempotent. So A1 is exchange.

We just mention that among matrices of form
[

7 0
0 s

]
, these are exchange for s ∈

{−4, 2, 6, 8, 12, 24} but not exchange for s ∈ {−2, 0, 4, 10, 16, 18, 20, 22}.

Proposition 3.4. An upper triangular integral matrix A =

[
a+ t b
0 −a

]
, with b 6= 0, t 6= 1,

which is not 1-clean, is exchange iff a, b, a + t are (collectively) coprime, and there exist integers
m11,m12,m21,m22 such that, with the notations introduced before Theorem 2.2, 1− t = αm11+
γm21 + δm22 and

(a+ t+ αm11)(−a+ 1− t− αm11) = (b+ γm11 + δm12)αm21.

Proof. This is Corollary 3.2, and Theorem 2.2, (i). �

Example 3.10.
[

2 2
0 2

]
. The entries are not coprime, but the matrix is I2-clean, so ex-

change over Z.

Example 3.11.
[

3 3
0 3

]
. The entries are not coprime, the matrix is not I2-clean, so it is

not exchange over Z.
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Example 3.12.
[

2 3
0 2

]
. The linear equation amounts to 2m11 + 9m21 + 2m22 = 3 with

solutions m11 = 6 + 9u− v, m21 = −1− 2u, m22 = v (arbitrary elements u, v).
The quadratic equation is (2 − 2m11)(−1 + 2m11) = 2(3 − 9m11 − 2m12)m21. For u =

−1, v = −2 we get m11 = −1, m21 = 1, m22 = −2 and then m12 = 3 . Indeed, for

M =

[
−1 3
1 −2

]
we get C =

[
4 6
−2 −3

]
, an idempotent. Hence the matrix is exchange

over any ring.

For M =

[
1 −3
0 1

]
, we obtain the trivial idempotent C = 02 (not covered by the

equations above).

4. APPLICATION

In [6] we can find the following
Theorem 5.12 Let e be an idempotent in a ring R and a = b + ε with b ∈ S := eRe,

ε ∈ Idem(eRe). Then a is exchange in R iff b is exchange in eRe (here e = 1− e, the comple-
mentary idempotent).

There are two special cases which are related to our research.
1) R =M3(Z) with e = E11 + E22 and e = E33. In this case we identify S = eRe with

M2(Z) and eRe with Z.
2) R =M3(Z) with e = E11 and then e = E22 + E33. In this case we identify S = eRe

with Z and eRe withM2(Z).
Using this, we obtain two consequences. We use block representations of 3×3 matrices

(0 denotes a 2-row, or a 2-column).

Corollary 4.4. Let U ∈ M2(Z) and ε ∈ {0, 1} ⊂ Z. Then A =

[
U 0
0 ε

]
is exchange in

M3(Z) iff U is exchange inM2(Z).

Corollary 4.5. Let b ∈ Z and E = E2 ∈ M2(Z). Then A =

[
b 0
0 E

]
is exchange inM3(Z)

iff b is exchange in Z iff b ∈ {−1, 0, 1, 2} ⊂ Z.

Therefore, using the results in the previous section we can generate plenty of not ex-
change 3× 3 matrices.

Corollary 4.6. The following 3× 3 matrices are not exchange for any n ∈ Z, n ≥ 2:

(a)
[
U 0
0 ε

]
for U ∈

[
nZ+ 1 nZ
nZ nZ+ 1

]
, det(U) /∈ {±1} and ε ∈ {0, 1},

(b)
[
U 0
0 ε

]
for U ∈M2(nZ), det(U − I2) /∈ {±1} and ε ∈ {0, 1},

(c)
[
b 0
0 E

]
with any 2× 2 idempotent E and b ∈ Z− {−1, 0, 1, 2}.

Final comments. 1) Among other things, Horia F. Pop wrote a program which, given a
2× 2 matrix A, prints all the matrices M such that B = A+M(A−A2) = B2. In order to
avoid a redundant search, the matrices M are searched incrementally with the nonnega-
tive integer z starting at 0 and incremented by 1 for as long as it is deemed necessary. For
each distinct value of z, only the matricesM with all elements in the closed interval [−z, z]
and having at least one element of absolute value equal to z are tested. This procedure
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has the advantage of splitting the set of all matrices M with integer elements into distinct
subsets, covered one at a time. The program was decisive in proving some of our results.

2) In view of the result mentioned in the title, we could wonder whether
(a) trace 1, 2× 2 matrices are (even) clean ?
(b) the result does hold for 3× 3 matrices ?

Both questions have negative answer:
[

4 0
0 −3

]
is not clean (see Theorem 4, [4]), and 3 0 0

0 −3 0
0 0 1

 is not exchange (by Corollary 4.6, (a)).

Acknowledgement. Thanks are due to Professor Samir Siksek, Warwick University, for
proving Lemma 2.2, which alowed us to prove the striking Theorem 2.1.
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BABEŞ-BOLYAI UNIVERSITY
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