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Morphic objects in categories
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Abstract

An R-module RM is called morphic if M/imα ∼= kerα for every endomorphism α of
M , that is, if the dual of the Noether isomorphism theorem holds.

In this paper we consider this notion in categories with kernels and images and recover
most of its properties under suitable conditions. Connection with unit-regular and regular
objects is made.
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1 Introduction

In [5] (1976) Ehrlich proved that an endomorphism α of a module RM is unit-regular if and only
if it is regular and M/im(α) ∼= kerα, that is, the dual of the Noether isomorphism theorem
holds for α. After nearly 30 years, the interest for this dual florished in 2003-2004, when
Nicholson and Sánchez Campos published a series of papers ending with [8]. Nowadays, the
subject continues to be investigated in several papers, including (Abelian) groups (see [1], [9]).

An endomorphism α was called morphic if M/im(α) ∼= kerα, a module RM was called
morphic if all its endomorphisms are morphic and a ring R was called left morphic provided
that RR is a morphic module.

Since an endomorphism α is morphic if and only if there is an endomorphism β such that
imβ = kerα and imα = kerβ, we can define morphic (endomorphisms and) objects in a category
C, provided C has kernels and images. In this note, some results are generalized in so called
Puppe-exact categories (p-exact for short, see [3] or [2]), and most of them are recovered in
abelian categories. Connection with unit-regular and regular objects is made. The main source
of inspiration was [8].

To be precise, hereafter a category with zero is called p-exact if every morphism factors
as a conormal epi followed by a normal mono. As a consequence, kernels and cokernels ex-
ist, all monos are normal and all epis are conormal. In such categories, products, pullbacks
and pushouts need not exist: a p-exact category is abelian (with a well-determined additive
structure) if and only if it has finite products.
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Note that such categories were called exact by Mitchell and Herrlich, Strecker (see [7] or
[6]).

2 Morphic objects

Definition. Let M be an object in a category C with kernels and images. An endomorphism
α of M is called morphic if there is an endomorphism β of M such that the following sequence
is exact

M
α−→M

β−→M
α−→M.

The object M is itself morphic if every endomorphism α of M is morphic. Hence an endo-
morphism α is morphic if and only if there is an endomorphism β such that imβ = kerα and
imα = kerβ.

Examples. 1) If R is any ring with identity, the morphic objects in the category R-Mod
(left R-modules) are exactly the morphic modules (see [8]).

2) In pEns, the category of pointed sets, one can check a simple characterization: a pointed
set (A, a) is morphic if and only if the set A is finite.

3) Let T (see [6], Ex. 39B) be the full subcategory of pTop (pointed topological spaces)
whose objects are a singleton pointed space {∗}, and a 3 elements pointed space (T, a), with
the open sets: ∅, T , {a} and {b, c} if T = {a, b, c}.

Thus, T has kernels and cokernels, is normal and conormal but is not p-exact. One can
check (T, a) has only 5 endomorphisms and that both objects in T are morphic.

4) Since Grp, the category of groups, is not normal (and so, nor p-exact), one has to define
morphic endomorphisms by requiring the image to be a normal subgroup. This is done in [9].

Remarks. 1) Every automorphism M → M is morphic (take β = 0). In particular,
identity endomorphisms are morphic, and since zero morphisms are trivially morphic, so is the
zero object. More, if all nonzero endomorphisms of an object are automorphisms, the object
itself is morphic.

2) An object which is not morphic in a category C may be morphic in a subcategory of C.
Indeed, the additive group of the real numbers (R,+), is torsion-free divisible of continuum
rank in Ab, the category of Abelian groups, i.e., R =

⊕
ℵ1

Q. As such, it is not morphic (see [1]).

However, consider HausAb, the (not full) subcategory of all Hausdorff (topological) Abelian
groups together with continuous group homomorphisms. Considered in this subcategory, (R,+)
is morphic.

3) Subobjects of morphic objects need not be morphic. Take Z and Q as Z-modules.
4) Factor objects of morphic objects need not be morphic. Take Q and Q/Z.
5) Composition of morphic endomorphisms need not be morphic. Indeed, consider M =

Z2 ⊕ Z4, as Z-module, p : M −→ M the projection on Z2 and q : M −→ M defined by
q(x̂, y) = (ŷ, 2x). It is readily checked that q is well-defined, both p and q are morphic, but the
composition q ◦ p is not. Actually, both ker(q ◦ p) and M/im(q ◦ p) have order 4 but the first is
cyclic and the second, of Klein type. Hence ker(q ◦ p) �M/im(q ◦ p).
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3 p-exact categories

First recall that in a p-exact category, for a (short) exact sequence

0 −→ A
α−→ B

β−→ C −→ 0

we frequently denote (up to an isomorphism) C by B/A.

This way, for A
α−→ B, if A

q−→ imα
v−→ B is the (co)image mono-epi decomposition, then

0 −→ kerα −→ A
q−→ imα −→ 0

is a short exact sequence and so (1-st Noether Theorem) A/ kerα ∼= imα.

Lemma 1. In a p-exact category an endomorphism α is morphic if and only if M/imα ∼= kerα.

Proof: If α is morphic, let β be associated to α. Since the 1-st Noether Theorem holds
for β, i.e., A/ kerβ ∼= imβ, by replacement we obtain A/imα ∼= kerα. Conversely, suppose
σ : M/imα −→ kerα is an isomorphism. Using the notations in the following diagram

0
↓

0 −→ kerα
u−→ M

q−→ imα −→ 0
α↘ ↓ v

↖ σ M
↓ p

M/imα
↓
0

consider β = u ◦ σ ◦ p. Then kerβ = ker(uσp) = ker p = v and so kerβ = imα. Finally, since

the mono-epi decomposition of β is M
p−→ M/imα

σ−→ kerα
u−→ M , we obtain imβ = kerα.

Corollary 2. A morphic endomorphism in a p-exact category is monic if and only if it is epic.

Proof: Suppose α is monic. Since M
α−→ M

β−→ M
α−→ M is exact, imβ = kerα = 0, which

makes β the zero morphism. Hence imα = kerβ = M and so α is epic (in a p-exact category,
using the mono-epi decomposition and imα = coimα = M , it follows that α = 1Mα is epic).

Conversely, suppose α is epic. Then again, α = 1Mα is the mono-epi decomposition and so
kerβ = M . Thus β is a zero morphism and similarly imβ = kerα = 0 and α mono.

Example. Let R be a (noncommutative) ring with identity which has a left (right) 0-divisor
which is not right (left) 0-divisor. Then R, viewed as a category with only one object, is not
morphic.
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Proposition 3. The following are equivalent for an object M in a p-exact category:
(1) M is morphic.
(2) If M/K ∼= N where K and N are subobjects of M , then M/N ∼= K.

Proof: For a subobject (K,u) of a morphic object M , denote (up to isomorphism) by M/K =
(co ker(u), p), that is, we have a short exact sequence

0 −→ K
u−→M

p−→M/K −→ 0.

Suppose (N, v) is another subobject of M together with the corresponding short exact sequence

0 −→ N
v−→M

q−→M/N −→ 0

and M/K
φ∼= N ; we have to prove M/N ∼= K.

Consider α : M
p−→ M/K

φ−→ N
v−→ M . If β is associated to α, then imβ = kerα =

ker(v ◦ φ ◦ p) = ker p = K and kerβ = imα = N , because α is already decomposed mono-epi
and so N is its image. By 1-st Noether Theorem for β, M/ kerβ ∼= imβ and so M/imα ∼= kerα.

Conversely, let α be any endomorphism of M . Again, by 1-st Noether Theorem, M/ kerα ∼=
imα and so, by hypothesis, M/imα ∼= kerα. Finally, we use Lemma 1.

We just mention

Theorem 4. The following conditions are equivalent for a morphic object M in a p-exact
category:

(1) Every subobject of M is isomorphic to an image of M .
(2) Every image of M is isomorphic to a subobject of M .
In this case, if N and N ′ are subobjects of M then M/N ∼= M/N ′ if and only if N ∼= N ′.

We just note that for all results in this section, no additive structure (i.e., an abelian group
structure on the Hom-sets), nor finite products were necessary.

4 Abelian categories

Having in mind our first example and Mitchell Embedding Theorem, a natural question is
whether proofs of results concerning morphic objects in abelian categories may be reduced to
the corresponding proofs, already known, for R-modules.

Indeed, this can be done as follows.

Proposition 5. Let C be a small subcategory of an abelian category A. Then there exists a
small abelian full subcategory D of A such that C is a subcategory of D.

Theorem 6. (Mitchell) For any small abelian category there is a full and faithful exact functor
(embedding) to a suitable category of modules.
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Theorem 7. Let F : A −→ B be a full and faithful exact functor between two abelian categories,
and A ∈ Ob(A). Then A is morphic if and only if F (A) is morphic.

Proof: Suppose A is morphic (in A) and let α be an endomorphism of F (A). The functor F
being full, there exists an endomorphism α of A such that α = F (α). Since A is morphic, there
is an endomorphism β ∈endA(A) such that the following sequence is exact

A
α−→ A

β−→ A
α−→ A.

Hence

F (A)
α−→ F (A)

F (β)−→ F (A)
α−→ F (A)

is (together with F ) also exact and F (A) is morphic.
Conversely, if F (A) is morphic and α is an endomorphism of A, there is an endomorphism

β of F (A) such that

F (A)
F (α)−→ F (A)

β−→ F (A)
F (α)−→ F (A)

is exact. Again, F being full, β = F (β), for a suitable β ∈endA(A) and so

F (A)
F (α)−→ F (A)

F (β)−→ F (A)
F (α)−→ F (A)

is exact. Now, since F is exact, it preserves zero, and so, being faithful, it reflects exact
sequences (see [7], Theorem 7.1). Finally

A
α−→ A

β−→ A
α−→ A.

is exact and so A is morphic.

Therefore, using, in abelian categories, the (traditional) term of finite direct sum, instead
of finite coproduct (or product), we can recover the following results

Theorem 8. Every direct summand of a morphic object is again morphic.

However, the class of morphic modules is not closed under taking direct sums. In fact, the
Z-modules Z2 and Z4 are both morphic, but Z2 ⊕ Z4 is not morphic.

Proposition 9. If M and N are morphic objects with HomC(M,N) = 0 = HomC(N,M), then
M ⊕N is morphic.

Proposition 10. Let M and N be objects with HomC(M,N) = 0. If there is an epimorphism
π : N −→M then M ⊕N is not morphic.

Rephrasing a previous remark, if Morf(C) denotes the full subcategory of all the morphic
objects in C, this subcategory has no (finite) (co)products, and this opens another subject: to
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determine the properties of this subcategory. Unfortunately, this is a bad category. Here are
some examples (already Ab will do).

No kernels: consider Z4 ⊕ Z4
p1−→ Z4

2−→ 2Z4 with p1 the projection on the left summand
and 2 the multiplication, where both Z4⊕Z4 and 2Z4

∼= Z2 are morphic. However ker(2◦p1) =
2Z4 ⊕ Z4 is not morphic. Hence there are no pullbacks, nor equalizers.

No images: now take 2Z4
i−→ Z4

i1−→ Z4 ⊕ Z4 with i the inclusion and i1 the injection in
the left summand. Again im(i1 ◦ i) = 2Z4 ⊕ Z4 is not morphic.

No cokernels: again co ker(i1 ◦ i) = (Z4 ⊕ Z4)/(2Z4 ⊕ 0) ∼= Z2 ⊕ Z4 is not morphic.

5 Unit regular, regular and morphic

An endomorphism α : M → M is called unit regular (in the sense of G. Ehrlich) if α = ασα
for some automorphism σ of M , or equivalently, if α = πσ , where π2 = π and σ is an
automorphism.

As in [7], we denote by αM the image of α, and, for a morphism α : A −→ B and a
monomorphism A′ −→ A, we denote the image of the composition A′ −→ A −→ B by α(A′).

Lemma 11. Let α ∈ endM be a morphic endomorphism in a category with kernels and images.
If σ : M → M is an automorphism, then ασ and σα are both morphic. In particular, every
unit regular endomorphism is morphic.

Proof: By definition, choose β ∈ endM such that βM = kerα and kerβ = αM . Then
σαM = αM = kerβ = ker(βs−1), and ker(σα) = σ−1(kerα) = (βσ−1)M , so σα is morphic.
Similarly, ασM = σ(kerβ) = ker(σ−1β) and ker(ασ) = kerα = βM = (σ−1β)M , so ασ is
morphic. The last claim follows from the equivalent definition above.

Regular objects M in an abelian category C are naturally defined by asking endCM to be a
regular ring (for a more general notion of relative regular object see [4]). In a similar way, we
can define unit-regular objects by asking endCM to be a unit-regular ring.

Extending an early result for modules of Azumaya (1960), in [4], for abelian categories it is
proved

Proposition 12. Let α be an endomorphism of M in an abelian category. Then α is regular
if and only if both imα and kerα are direct summands of M .

In order to relate unit-regular, regular and morphic objects in abelian categories directly
(not using Mitchell’s Embedding Theorem), we need the following

Lemma 13. In an abelian category, let α ∈ endM and M = N ⊕ kerα. Then αM = αN .
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Proof: For (K,u) = kerα and (I, i) = imα, consider the crossed exact sequences

0
↓
N
↓

0 −→ K
u−→ M −→ I −→ 0

↓ p
K
↓
0

where p ◦ u = 1K . Since N −→ M −→ I is epimorphism if and only if K −→ M −→ K = 1K

is epimorphism (see Corollary 16.8, [7]), N −→ M −→ I
i−→ M is a mono-epi decomposition

for N −→M
α−→M and so αM = αN .

Remark. Embedding this diagram into a 9 Lemma type diagram (0 pull-back for the left
upper square), shows that, more, α : N −→M −→ I is an isomorphism.

Using this, we can give a direct proof of the following characterization which generalizes a
result of Ehrlich ([5]).

Theorem 14. In any abelian category, an endomorphism α is unit regular if and only if it is
both regular and morphic.

Proof: If α is unit regular then it is morphic by Lemma 11. Conversely, if M is regular, by
the previous Proposition, M = imα⊕K = N ⊕ kerα, and so (since the short exact sequence

0 −→ imα −→M −→ K −→ 0

splits) K ∼= M/imα and this is ∼= kerα because α is morphic, say via γ : K → kerα.
Using the previous Lemma, from M = imα⊕K = N ⊕ kerα we deduce imα = αN and so

we have M = αN ⊕K.
Further, using also the previous Remark, define σ : M → M , that is, σ : αN ⊕ K −→

N ⊕ kerα by the following matrix σ =

[
α−1 0

0 γ

]
which is clearly a unit in endM .

Finally, ασα = α holds because of the following matrix computation:[
α 0
0 γ−1

] [
α−1 0

0 γ

] [
α 0
0 γ−1

]
=

[
α 0
0 γ−1

]
.

An object M is kernel-direct if for every α ∈ endC(M), kerα is a direct summand of M
and image-direct if for every α, imα is a direct summand of M . Since for a morphic object,
kernel-direct implies image-direct and conversely, we can also prove the following extension
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Theorem 15. The following are equivalent for an object M in an abelian category:
(1) endM is unit regular.
(2) M is morphic and kernel-direct.
(3) M is morphic and image-direct.
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