
On type 1 representable lattices of dimension at most 4

Grigore Călugăreanu and Carolina Conţiu

Abstract. We prove that every lattice of length (formerly, dimension) at most 4,
representable by commuting equivalence relations, is also representable by subgroups

of an Abelian group.

1. Introduction

In [5], Jónsson considered lattices of commuting equivalence relations (often

called type 1 representable) and proved that such lattices are Arguesian. In [6],

Jónsson was able to prove that for lattices of dimension (from now on length,

to use the current terminology) at most 4, the converse holds true.

After 35 years, the paper [3] made it possible to add n = 5 to the former

n ≤ 4: every Arguesian lattice of length at most 5 is type 1 representable.

In the reversed direction, examples given by Haiman [4], show that for

n ≥ 7, there are Arguesian lattices which are not type 1 representable.

Denote by A the class of all the lattices isomorphic to subgroup lattices

of Abelian groups, by N the class of all the lattices isomorphic to normal

subgroup lattices of arbitrary groups and

by L the class of all the linear lattices (i.e., isomorphic to lattices of commut-

ing equivalence relations). Further, denote by Z the ring of all integers, and

by Zn the ring of integers modulo a positive integer n. Furthermore, denote

by L(Z) the class of all the lattices representable by lattices in A, by N (rep)

the class of all lattices representable by lattices in N , and by T1 the class of

all the type 1 representable lattices, that is, representable by lattices in L.

For general information on representations of lattices we refer the reader to

Crawley, Dilworth (see [2], chapter 12, p. 96–104), Nation (see [8], chapter 4,

p. 35–43) and to Jónsson’s seminal paper (see [5]).

Since all subgroups in an Abelian group are normal and the congruences

induced by normal subgroups commute, it is well-known that A ⊆ N ⊆ L and

so L(Z) ⊆ N (rep) ⊆ T1, and that none of these inclusions is an equality (for

counterexamples see our final comment, Jónsson [7, p. 309–314], and
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Pálfy–Szabó [9]). All lattices in these classes are Arguesian and hence also

modular. Combining results of Birkhoff, Frink, Schützenberger and Jónsson,

if we call geomodular a complete, atomistic, complemented, modular lattice

such that every atom is compact, the following result was already known in

the early fifties:

Theorem 1.1. The following conditions are equivalent, for any geomodular

lattice L:

(i) L ∈ A;

(ii) L ∈ N ;

(iii) L ∈ L;

(iv) L is Arguesian.

In [7], Jónsson was able to extend the previous theorem for any comple-

mented (modular) lattice. In the same paper, Jónsson gives an example of

a modular lattice of length 5 which is isomorphic to a lattice of commuting

equivalence relations, but not to any lattice of normal subgroups of an arbi-

trary group. It follows that N ( L, with a (modular) lattice of length 5 in the

difference.

Finally, in [2], the following result is proved.

Theorem 1.2. The following conditions are equivalent, for any complemented

modular lattice L:

(a) L ∈ L(Z);

(b) L ∈ T1;

(c) L is Arguesian.

We quote from [5]: “It can be shown that a lattice of dimension 4 or less

has a type 1 representation if and only if it is Arguesian. Similar questions

can be raised

concerning lattices which are isomorphic to lattices of normal subgroups of

arbitrary groups or to lattices of subgroups of Abelian groups”.

Some 60 years after this comment, in this paper we show that we have

equalities L(Z) = N (rep) = T1 for length at most 4 (modular) lattices.

This study can also be related to the following (frequently hard) open ques-

tion: when is a given quasivariety, actually a variety? Actually, here the

closure under homomorphic images makes the difference.

For the classes L(Z), N (rep), and T1, the answer is not known. Since

our study shows that for length at most 4 all these classes coincide with the

Arguesian lattices and Arguesian lattices form a variety (i.e., it is closed under

homomorphic images), our results somehow encourage to conjecture a positive

answer.
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2. Modular lattices of length at most 4

In [6], a “reasonably complete picture” of all modular lattices of length at

most 4 is given. Since this is also our environment (as it was for Arguesian

lattices), we briefly remind the reader the results.

A lattice of length zero consists of just one element 0 = 1, and a lattice of

length one consists of exactly one chain with two

elements 0 and 1. A lattice of length two consists of 0 and 1 together with

one or more atoms and will be denoted by Mn, if it has n atoms. Since the

join of two distinct atoms is always 1, and the meet is always 0, such a lattice

is completely determined up to isomorphism by the number of its atoms.

Remarks 2.1. – If L and L′ are lattices of length two and L′ has at least as

many elements as L, then L is isomorphic to a sublattice of L′. In fact, given

atoms p in L and p′ in L′, there exists an isomorphism f from L to L′ such

that f(p) = p′.

– All these lattices are complemented, so the equalities A = N = L and

L(Z) = N (rep) = T1 hold according to Theorems 0 and 0′ (see previous

Section), respectively. Thus, we can discard at once all lattices of length at

most 2.

Denote by δ(x) the height of an element x in a modular lattice L of finite

length, by s the socle of L (the join of all atoms) and by r the radical of L (the

meet of all dual atoms). Since a finite length modular lattice is complemented

if and only if 1 is the socle if and only if 0 is the radical, the conditions

δ(s) = n and δ(r) = 0 are equivalent and imply that L is complemented.

If δ(s) = 1, then s is an atom of L, and in fact s is the only atom of L.

In this case L is completely determined by its sublattice 1/s of length n − 1.

Similarly, if δ(r) = n − 1, then the study of L reduces to the study of its

length n − 1 sublattice r/0. We shall therefore be concerned here with the

cases 1 < δ(s) < n and 0 < δ(r) < n− 1.

Thus if n = 3 then only δ(s) = 2 and δ(r) = 1 has to be considered and if

n = 4, δ(s) ∈ {2, 3} and δ(r) ∈ {1, 2}.
Say that an element x ∈ L − {1} is meet-irreducible if x = u ∧ v implies

that x ∈ {u, v}, for all u, v ∈ L; join-irreducible elements are defined dually.

An element is irreducible if it is both meet- and join-irreducible.

Every join-irreducible element covers a unique element, and every meet-

irreducible element is covered by a unique element. Thus, in the context above,

if s is not an atom (e.g., if δ(s) = 2), then it is not join-irreducible, and (dually)

if r is not a dual atom (e.g., if δ(r) = 2), then it is not meet-irreducible.

Therefore we need to distinguish only the following two cases.

Theorem 2.2 (Theorem 2.2 of [6]). For n ∈ {3, 4}, if 0 < δ(r) < δ(s) < n,

then r < s and L = s/0 ∪ 1/r.
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Theorem 2.3 (Theorem 2.3 of [6]). If n = 4 and δ(r) = δ(s) = 2, then

s/0 ∪ 1/r = L − X, where X is the set of all irreducible elements x ∈ L

with δ(x) = 2. Furthermore, each element of X covers a unique atom and is

covered by a unique dual atom, and two elements of X cover the same atom

if and only if they are covered by the same dual atom. Finally, if s 6= r, then

s ∧ r is an atom and is covered by r, s ∨ r is a dual atom and covers s, and

s ∧ r ≺ x ≺ s ∨ r for every element x ∈ X.

3. Length 3 and 4

A modular non complemented lattice of length 3 is isomorphic (see previous

Section) to a lattice as on Figure 1, with s an atom and r not a dual atom.

This diagram represents the lattice Mn glued with the lattice Mm, with a

prime ideal of the top lattice being identified with a prime filter of the bottom

lattice. We will denote this lattice by Mn�Mm.

r

s

m− 2

n− 2

Figure 1. A family of lattices of length 3

Since finite Abelian groups are self-dual (see [1] Baer, 1937), if m 6= n, then

clearlyMn�Mm /∈ A. Moreover, it can be proved that onlyMp+1�Mp+1 =

L(Zp ⊕ Zp2) ∈ A, for a prime number p.

Thus we obtain the following.

Theorem 3.1. Every modular non complemented lattice of length 3 belongs

to L(Z).

Proof. For arbitrary given positive integers m,n, choose any prime number

p such that max(m,n) ≤ p + 1. A lattice embedding must be defined from

Mn�Mm into Mp+1�Mp+1; this is illustrated on Figure 2.

This is done as follows: 0, r, b, s, a, 1 remain fixed, the remaining m − 2

atoms are injectively mapped to atoms, and the remaining n − 2 dual atoms

are injectively mapped to dual atoms.

The length 3 case in which either s is an atom or r is a dual atom reduces

to the length 2 case: embed, for instance, as shown on Figure 3, for a prime

number p ≥ n− 1.

�

Corollary 3.2. For lattices of length ≤ 3, L(Z) = N (rep) = T1 holds.
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p− 1

p− 1m− 2

n− 2

Figure 2. An embedding between lattices of length 3

r

sa

b

00

11

p− 1

p− 1

n− 2

s = r

Figure 3. An embedding between lattices of length 3

To conclude our study, a length 4 modular non complemented lattice is

isomorphic (see previous Section) either to one of the four types of lattices

represented on Figure 4, or, in the case s = r, to a lattice of the form repre-

sented on Figure 5.

Notice that these Figures improve Jónsson’s illustration in [6], p. 138, where

in particular Figure 5 is twofold incomplete: the right part did not enter in the

page, and some more Mn’s must be added in order to cover all possibilities

(for instance L(Z4 ⊕ Z4), see Figure 7).

Using again the fact that for Abelian finite groups, the subgroup lattice is

self-dual, one checks that most of the lattices above do not belong to A.

Further, we get the following.

Theorem 3.3. Every modular non complemented lattice of length 4 belongs

to L(Z).

Proof. First, it is readily seen that the lattice represented in the upper left

corner of Figure 4 can be embedded into L(Zp⊕Zp3), for suitable prime num-

ber p. The simplest example of such a lattice in A is L(Z2 ⊕Z8), represented

in Figure 6.

Moreover, the lattice of Figure 5 can be embedded into L(Zp2 ⊕ Zp2), for

a suitable prime number p. Again the simplest example in A is L(Z4 ⊕ Z4),

represented in Figure 7.
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r

r

r

r

s s

s s

Figure 4. Families of lattices of length 4 with r 6= s

r

s

Figure 5. A family of lattices of length 4 with r = s

For the remaining three types of lattices we deal with a ‘cube’ (i.e., the

direct product 2× 2× 2, the boolean algebra of length 3, with 2 denoting the

chain of length 1) over a ‘cube’, or a ‘cube’ over or below an Mn.

From now on, we will denote by 3 the chain of length 2. Recall that the

groups Gi (i ∈ I) are said to be coprime if every Gi is a torsion group and

gcd(ord(x), ord(y)) = 1 for all x ∈ Gi, y ∈ Gj , with i 6= j. In the sequel we

also use the well-known fact: subgroup lattices of coprime groups commute

with direct products.
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rs

Figure 6. A lattice in A, with r 6= s

G

N + V
S + U

T +M

N V S U T M

2N 2S 2M

0

Figure 7. A lattice in A, with r = s

The lattice represented in the lower right corner of Figure 4 is

L(Zp2⊕Zq⊕Zr), where p, q, r are pairwise distinct prime numbers. Since Zp2 ,

Zq, and Zr are coprime, we obtain L(Zp2⊕Zq⊕Zr) ∼= L(Zp2)×L(Zq)×L(Zr) ∼=
3× 2× 2.

We have previously noted that

L(Zp2 ⊕ Zp) ∼=Mp+1�Mp+1.

For any distinct prime numbers p and q, Zp2 ⊕Zp and Zq are coprime, and

so L(Zp ⊕ Zp2 ⊕ Zq) ∼= L(Zp2 ⊕ Zp) × L(Zq) ∼= (Mp+1�Mp+1) × 2. The

lattice L(Z2 ⊕ Z4 ⊕ Zp), where p is a prime number and p > 2, is represented

in Figure 8.

Using this, the lattices represented in the upper right and lower left corner

of Figure 4 can be embedded into (Mp+1�Mp+1) × 2, for a suitable prime

number p.

Finally, if either s is an atom or r is a dual atom, our study reduces to

the length 3 case. We are now concerned with (for instance) the lattices

represented in Figure 9.

As for the upper right corner of Figure 4, such a lattice can be embedded

into L(Zp ⊕ Zp3), for a suitable prime number p. �
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Figure 8. Representing L(Z2 ⊕ Z4 ⊕ Zp), for prime p > 2

r

s

Figure 9. A family of lattices of length 4

Corollary 3.4. For a lattice L of length at most 4, the following properties

are equivalent:

(a) L is representable by Abelian groups;

(b) L is representable by lattices of normal subgroups of arbitrary groups;

(c) L is representable by linear lattices;

(d) L is Arguesian.

Remark 3.5. The equality A = N does not hold for lattices of length at

most 4.

The subgroup lattice of the (8 element) quaternion group, which has length

3, is a simple counterexample.

Whether the equalityN = L holds for (modular) lattices of length at most 4,

remains an open question (for a negative answer, one should “improve” the

length 5 example of Jónsson, mentioned in the Introduction).
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