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Abstract

Notice that in the diamond (i.e., one of the two 5-element nondis-
tributive lattice) the intersection of the (three) maximal elements is
not irredundant, and a lattice is not distributive if it contains a dia-
mond. Hence, connections between the distributivity of a lattice and
the irredundancy of the intersection of its family of maximal elements
seem plausible.

In this paper, the authors prove that, under natural hypothesis,
distributivity is equivalent with certain conditions on maximal ele-
ments. Applications to the distributivity of the lattice of all ideals of
a semiprimitive ring with identity are given.

1 Introduction

The authors of [4] prove that a finite group G is cyclic if and only if for
each subgroup H of G, G =< H, H0 > holds, H0 denoting the intersection
of all maximal subgroups of G which do no contain H .

G. L. Walls (unpublished) noticed that in the above characterization it
suffices to take only the maximal subgroups H . Hence (via a well-known
theorem of Ore), the lattice of all subgroups of a finite group is distributive
if and only if for each maximal subgroup M of G, G =< M, M0 >. Thus, for
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this particular type of lattices, distributivity is equivalent to this property.
The authors of [4] wrote: ”to what extent this is a more general phenomenon
and which are the lattices in which it could still be detected is an open
problem”.

In what follows we consider several conditions in lattices (some of them
considered for finite or soluble groups in [4], [8], [5] and [3]), and prove a
characterization of distributivity using the family of all the maximal elements.

In order to increase the number of possible applications of these results
we have deliberately avoided other natural conditions such as the modularity
and the compactly generation of the lattice.

Applications for the lattice of all ideals of a semiprimitive ring with iden-
tity are given.

We have preferred the term ’maximal’ element and ’intersection’ instead
of ’dual atom’ respectively ’meet’. All the lattices we consider have 1 (the
largest element). We use the quotient sublattice notation from [2], we denote
by M the set of all the maximal elements in a lattice L , and for an element
a ∈ L, by D = {m maximal in L|a ≤ m}, N = {m maximal in L|a 6≤ m}
and a0 =

∧
N . As special case, for any maximal element m, m0 =

∧
(M−

{m}) (because m 6≤ m′ and m 6= m′ are equivalent for every maximal ele-
ments m, m′). We denote by r(L) the radical of a lattice, the intersection
of all maximal elements in L. The lattices with each element contained in
a maximal element are called dually atomic (and relatively dually atomic
if each quotient sublattice is dually atomic). A subset X of elements in a
lattice with 1 is called meet-independent if for every a ∈ X, the equality
a∨ (

∧
(X −{a})) = 1 holds. The intersection

∧
X is called irredundant if for

every a ∈ X,
∧

X 6=
∧

(X − {a}).

2 The conditions A, B and C

In this section we deal with the following conditions (considered for finite
groups in [4]):

condition A: for each a ∈ L and for every maximal element m ∈ L, a ≤ m
and a0 6≤ m are equivalent.

condition B: m ∨ m0 = 1 holds for every maximal element m ∈ L.
condition C: a ∨ a0 = 1 holds for every a ∈ L.
Notice that in a complete lattice L the join of an empty family of elements
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is 1 (this follows a well-known set-theoretic convention). For instance, if
a ≤ m holds for every maximal element in L, then a0 =

∧
{m1 maximal

|a 6≤ m1} =
∧

g/ = 1 (and trivially, a∨ a0 = 1). With the above notation the
equalities D∩N = g/ , D∪N = M hold. Also notice that a0 ≤ m for every
m ∈ N .

Remark. If C holds then the sublattice 1/r(L) is complemented (indeed,
for every a ∈ L we have a ≤

∧
D and a0 =

∧
N . Hence a∧a0 ≤

∧
M = r(L)

and the reversed inequality also holds if a ∈ 1/r(L)).

Proposition 2.1 In an arbitrary lattice, condition C implies any of the

equivalent conditions A and B. In a dually atomic lattice, conditions A,

B and C are equivalent.

Proof. In an arbitrary lattice L, obviously C implies B.

Further, using the definition of a0, it should be observed that a0 6≤ m ⇒
a ≤ m is true in any lattice. Therefore A actually is equivalent to a ≤
m ⇒ a0 6≤ m. Denoting by D0 = {m maximal in L|a0 ≤ m} and by N0 =
{m maximal in L|a0 6≤ m}, it follows immediately that A is equivalent with
D = N0, and hence also with D0 = N (indeed N0 ⊆ D holds for every a ∈ L).

A ⇒ B Take a = m. Then m0 6≤ m and so m < m ∨ m0 implies
m ∨ m0 = 1.

B ⇒ A Suppose A does not hold. Then there is an element a ∈ L and
a maximal element m such that a ≤ m and a0 ≤ m (i.e., N0 ⊂ D). Hence
m /∈ N and so N ⊆ M−{m}. Consequently, m0 =

∧
M−{m} ≤

∧
N = a0.

Finally, m ∨ m0 ≤ m ∨ a0 = m and B does neither hold.
A ⇒ C Assume a ∨ a0 6= 1 for an element a ∈ L. The lattice L being

dually atomic consider a maximal element m ∈ L such that a ∨ a0 ≤ m.
Then a ≤ m and a0 ≤ m so that A does not hold. 2

Example. Each compact lattice, by a classical result of Krull, is dually
atomic, so that in a compact lattice conditions A, B and C are equivalent.
In particular, these conditions are equivalent in every finite lattice.

Notice that condition B holds in a distributive lattice L with finitely
many maximal elements but the converse is not true. In the sequel we give
examples of finite nondistributive lattices which satisfy condition B.

Obviously m∨m0 = 1 (trivially) holds in every lattice with exactly 2 max-
imal elements. Hence, if we take the 4-element lattice with 2 incomparable
elements and adjoin below the diamond (i.e., the 5-element nondistributive
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lattice), we obtain counterexamples of arbitrary dimension (see the diagrams
below).

.
.

1

0

1

0

If we care for examples with n maximal elements we consider the dis-
tributive lattice of all subsets of an (n + 1)-element set and adjoin again
the diamond below. The following diagram, an 8-element distributive lattice
with 3 maximal elements, describes the case n = 3.

0

1

Finally we prove a converse for the implication mentioned above, ”con-
dition B holds in every distributive lattice with finitely many maximal ele-
ments”.

Proposition 2.2 The sublattice generated by a finite meet-independent fam-

ily of n maximal elements is isomorphic to the Boole algebra of all subsets of

an n-element set.

Proof. Notice that a family of maximal elements is meet-independent if
and only if it has an irredundant intersection. Indeed,

∧
X = a ∧ (

∧
(X −

{a})) 6=
∧

(X−{a}) is equivalent to
∧

(X−{a}) 6≤ a, or, a < a∨(
∧

(X−{a}))
and hence a ∨ (

∧
(X − {a})) = 1, a being a maximal element.

4



By definition, condition B holds exactly if the set of all maximal elements
M is meet-independent, or, according to the previous remark, when the
intersection

∧
M is irredundant.

The diagram which represents the sublattice generated by all maximal el-
ements has (excepting 1) n different levels, corresponding to the two maximal
element intersections, the three maximal element intersections, etc.

First observe that there are no comparable intersections of either two
maximal elements.

Indeed, if, for example, m1 ∧ m2 ≤ m3 ∧ m4 then (
∧

i6=3

mi) ∨ m3 = m3

because (
∧

i6=3

mi) ≤ m1 ∧ m2 ≤ m3, contradicting B.

Similarly, the three maximal element intersections are non-comparable,
..., the n − 1 maximal element intersections are n non-comparable elements
and the intersection of all maximal elements (i.e., r(L)) is the smallest ele-
ment of the sublattice.

Hence, the sublattice is isomorphic to the lattice of all subsets of an n-
element set, and to the corresponding Boole algebra. 2

Corollary 2.1 The sublattice generated by a finite meet-independent family

of maximal elements is distributive. 2

3 IM-lattices

A lattice L is called an IM-lattice if every element a ∈ 1/r(L) is an
intersection of maximal elements (or equivalently, every element a is the
intersection of all maximal elements which contain a). Equivalently, r(1/a) =
a holds for each a ≥ r(L).

The pentagon (i.e., the 5-element nonmodular lattice) is an example of
a dually atomic lattice with r(L) = 0 and finitely many maximal elements
which is not an IM-lattice.

A lattice L with 1 is called weakly join-complemented ([5]) if for every
pair of elements x, y ∈ L such that x < y there is an element z ∈ L so that
x ∨ z 6= 1 and y ∨ z = 1.

A lattice L with 1 is called LO-lattice ([3]) if for every pair of elements
x, y ∈ L such that x ≺ y (i.e., x is covered by y) there is a maximal element
m ∈ L such that x = y ∧ m.
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Remarks. - A complement z of y in 1/x clearly satisfies x ∨ z 6= 1
and y ∨ z = 1, and so each relatively complemented lattice is weakly join-
complemented.

- Each IM-lattice is weakly join-complemented. Indeed, let x < y be
elements in an IM-lattice L. If x =

∧
Dx and y =

∧
Dy with Dx = {m

maximal in L|x ≤ m} and Dy has similar meaning, then Dy ⊂ Dx and for
m ∈ Dx−Dy, we obtain x ≤ m and y 6≤ m. Hence x∨m = m 6= 1, y∨m = 1
and the lattice is weakly join-complemented.

The converse of this last implication seems to need severe restrictions on
the lattice (e.g., cycle generated).

An example of a finite weakly join-complemented lattice which is not an
IM-lattice is the direct product of two diamonds (each being a simple lattice).

Proposition 3.1 (Deaconescu) Each IM-lattice is an LO-lattice. In a rela-

tively dually atomic lattice the converse holds.

Proof ([3]). Suppose that in an IM-lattice L there are elements x ≺ y such
that x 6= y ∧ m for every maximal element m in L. Then, for each maximal
element m in L such that x ≤ m, y ≤ m also holds (otherwise x < y∧m < y
and y does not cover x), i.e., Dx ⊆ Dy. Hence y =

∧
Dy ≤

∧
Dx = x, which

contradicts x < y.
Conversely, in an LO-lattice suppose that a <

∧
Da holds for an element

a ∈ L. If the lattice is relatively dually atomic, there is a maximal element m′

in (
∧
Da)/a, and so a maximal element m in L, such that m′ = (

∧
Da) ∧ m.

Hence
∧
Da 6≤ m (otherwise

∧
Da = m′) and further, a 6≤ m (otherwise

m ∈ Da and
∧
Da ≤ m) which contradicts a ≤ m′ ≤ m. 2

Corollary 3.1 A finite lattice is an IM-lattice if and only if it is an LO-

lattice. 2

Using the previous Remark and Proposition we obtain

Corollary 3.2 Every relatively dually atomic LO-lattice is weakly join-

complemented. 2

Resuming the final results of the previous section, notice that in an IM-
lattice L, the sublattice generated by a finite meet-independent family of
maximal elements is 1/r(L). Obviously this is L if r(L) = 0 also holds.
Then
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Corollary 3.3 An IM-lattice with r(L) = 0 which satisfies condition B is

distributive. 2

Our first main result is

Theorem 3.1 In an IM-lattice L with r(L) = 0 and a finite family M of

maximal elements the following conditions are equivalent:

L is distributive,

M is a meet-independent family,∧
M is irredundant,

condition A, or

condition B. 2

Corollary 3.4 A finite IM-lattice with r(L) = 0 is distributive if and only

if it satisfies any of the conditions A, B or C. 2

We leave to the reader the connections with weakly join-complemented
lattices and LO-lattices.

4 The condition D

In this section we consider condition D: a = a00 holds for every a ∈
1/r(L). Here a00 denotes (a0)0.

Proposition 4.1 A lattice L satisfies condition D if and only if it is an

IM-lattice which satisfies condition B.

Proof. A lattice which satisfies condition D is an IM-lattice (a = a00 is an
intersection of maximal elements). Further, condition D implies condition
B. Indeed, if a = a00 holds for every element of 1/r(L), this is also true for
the maximal elements of L. Let m be an arbitrary maximal element of L.
Then m0 =

∧
(M−{m}) and m0 ≤ m′ holds for every m′ ∈ M−{m}. Two

cases arise: m0 6≤ m and thus m = m00, and, m0 ≤ m so that m00 = 1 6= m
(as empty intersection of maximal elements). Finally the condition m0 6≤ m
is equivalent to r(L) =

∧
M being an irredundant intersection (that is, for

every maximal element m, r(L) 6=
∧

(M − {m})), which is equivalent to
condition B.
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Conversely, the conditions A and B being equivalent (Proposition 2.1),
we show that if condition A holds in an IM-lattice then also condition D

holds.
First mention a simple assertion: for every element a ∈ L the following

holds
a ≤

∧
D ≤

∧
N0 = a00 (1) .

Indeed, with our previous notation, a00 =
∧
N0 and so a00 ≤ m for every

m ∈ N0. Owing to the equalities D0 ∩ N0 = g/ , D0 ∪ N0= M, by the
definition of D0, we have N ⊆ D0 and consequently N0 ⊆ D.

Finally, as previously noticed, condition A is equivalent to D = N0 and
this is equivalent with D0 = N . Hence above, in (1), we have only equalities
and condition D holds. 2

Corollary 4.1 (of the proof) If a = a00 then a =
∧
D. 2

Remark. More precisely, if condition B holds, every intersection of max-
imal elements satisfies condition D. Indeed, this follows at once using the
fact that, for every subset M′ of maximal elements,

∧
M′ is irredundant

(or equivalently, M′ is meet-independent), together with
∧
M (and so, if

a =
∧
M′, then M′ = D). This yields another proof for the second part of

the previous Proposition.
Remark. The result given in the previous Proposition cannot be im-

proved. Indeed, condition B does not imply IM (for example take the 3-
element chain) nor does condition B together with r(L) = 0. The following
two diagrams are suitable examples.

a b c

u

m m’’m’

0

1

m m’

1

0

Conversely, an IM-lattice does not necessarily satisfy condition B (the
diamond, i.e. the 5-element non-distributive lattice - the lattice of all sub-
groups of the Klein group - or, a 6-element lattice, isomorphic with the lattice
of all subgroups of the symmetric group S3).
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Moreover, condition B does not imply condition D (take the element a
in the previous diagram; a0 = m′′ and a00 = m ∧ m′ = u > a), nor does IM
imply condition D (again the diamond: m00 = 1 6= m in the next diagram).

1

0

m

Finally, our second main result is

Theorem 4.1 A lattice with finitely many maximal elements and r(L) = 0
satisfies the condition D if and only if it is a distributive IM-lattice.

Proof. One has only to use Corollary 3.1 and Proposition 4.1. 2

Remark. Again, this result cannot be improved. The next diagram
represents a distributive lattice which is not IM.

5 Examples and applications.

Call DA-groups the abelian groups which have a dually atomic lattice of
subgroups (i.e., each proper subgroup is contained in a maximal subgroup).
This is a rather restrictive condition. Indeed, one can prove that a group G
is a DA-group if and only if all its p-components are bounded and G/T (G)
is of finite torsion-free rank and of reduced Richman type.

Next, using the characterization of the soluble IM-groups given in [8],
notice that the abelian IM-groups are exactly the elementary groups.
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Indeed, for an abelian (IM-groups are torsion) group, if there is an ele-
mentary Hall subgroup with elementary quotient, this subgroup has to be a
direct summand (the corresponding extension is splitting) and so, the group
is elementary; conversely, the subgroup lattice of an abelian IM-group is
modular and complemented and hence also relatively complemented. We
can apply the characterization given in [5] and the first Remark from Section
3.

Finally, call A-groups the groups which have maximal groups (i.e., we
discard the divisible groups) and satisfy condition A. We can prove that
there are no mixed A-groups, the torsion A-groups are the prime power
order cyclic groups, and, the torsion-free A-groups are the rank 1 groups
whose types have no infinity entry and have infinitely many non-zero entries.

The lattice L(R) of all ideals of an associative ring R with identity being
dually atomic, applications of our results are to be expected. Recall that R
is called semiprimitive if its Jacobson radical J(R) vanishes.

Using Theorem 3.1 and Theorem 4.1 we obtain at once

Corollary 5.1 The lattice L(R) of all ideals of a semiprimitive ring with

identity, with finitely many maximal ideals, such that every ideal is an inter-

section of maximal ideals is distributive if and only if it is satisfies any of the

conditions A or B. 2

Corollary 5.2 The lattice L(R) of all ideals of a semiprimitive ring with

identity and with finitely many maximal ideals satisfies condition D if and

only if it is distributive and every ideal is an intersection of maximal ideals.

2

Corollary 5.3 The lattice L(R) of all ideals of a finite semiprimitive ring

with identity such that every ideal is an intersection of maximal ideals is

distributive if and only if it satisfies any of the conditions A, B or C. 2

Corollary 5.4 The lattice L(R) of all ideals of a finite semiprimitive ring

with identity is distributive if and only if it satisfies condition D. 2

Following Fuchs [6], a commutative ring with identity is called arith-
metical if the ideals form a distributive lattice. Several characterizations
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of arithmetical rings using maximal ideals (but also the corresponding lo-
cal (generalized) quotient rings) are given in [6] and [7]. The semiprimitive
case is also partially discussed. As for now, the authors do not have any
link between these apparently similar characterizations and the applications
obtained above.
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