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SIMION BREAZ AND GRIGORE CĂLUGĂREANU

Abstract. A ring with identity exists on a torsion Abelian group exactly
when the group is bounded. The additive groups of torsion-free rings with
identity are studied. Results are also given for not reduced splitting mixed
rings with identity. The Abelian groups G such that, excepting the zero-ring,
every ring on G has identity are also determined.

1. Introduction

In the sequel, all the groups we consider are nonzero Abelian, and all the rings
are nonzero and associative. As customarily, for a ring R, we denote the additive
(Abelian) group by R+, and for an Abelian group G, we say that R is a ring on G if
R+ = G. Hereafter, a group will be called an identity-group (identity for short) if
there exists an associative ring with identity on G and strongly identity-group (S-
identity for short), if it is identity and, excepting the zero-ring, all associative rings
on G have identity. A group G is called nil if the only ring on G is the zero-ring.
Clearly nil groups are not identity nor S-identity.

Since unital rings embed in the endomorphism rings of their additive groups it
follows that identity-groups are isomorphic to additive groups of unital subrings of
endomorphism groups. As a special case, endo-groups (and among these, additive
groups of so-called E-rings) are identity-groups. Here an Abelian group G is called
an endo-group if there is a ringR overG such thatR ∼= End(G), a ring isomorphism.
However, a simple comparison (see 4.6.7-4.6.11, [1]) shows that endo-group is far
more restrictive than identity-group (e.g. any finitely generated group is identity,
but only cyclic groups are endo-groups).

It was known from long time that a torsion group is the additive group of a
ring with identity if and only if it is bounded, i.e., a bounded direct sum of finite
(co)cyclic groups. Consequently, it is not hard to show that the only S-identity
torsion groups are the simple groups Z(p), for any prime number p (for a proof,
see next Section). Moreover, the only torsion-free S-identity group is Q, the full
rational group, and there are no mixed S-identity groups.

Since there are no results on torsion-free or mixed identity-groups, this is what
we investigate in this note. In the torsion-free case we obtain results when the
typeset T(G) contains a minimum element which is idempotent and in the mixed
case significant results are found in the case of splitting mixed groups which are
not reduced.
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In the general case, the problem seems to be difficult (as many problems related
to torsion-free or mixed rings are). Thus, this note also intends to open a possible
new area of research.

For definitions, notations and results on Abelian groups we refer to L. Fuchs [2].
The largest divisible subgroup of an Abelian group G will be called the divisible

part of G, and a direct complement of the torsion part will be called a torsion-free

part. For results on additive groups of rings we refer to S. Feigelstock [1]. The left
annihilator of a ring R is annl(R) = {a ∈ R|aR = 0}. Similarly, the right and the
annihilator of a ring are defined. Obviously, any ring with identity must have zero
left (or right, or two-sided) annihilator. Since in any ring, disjoint ideals annihilate
each other, in the additive group of a ring, different primary components annihilate
each other, and any torsion-free ideal annihilates the torsion part. For a subgroup
H of R+, (H) denotes the ideal generated by H in R.

2. Strongly identity groups

Any ring multiplication may be extended from a direct summand, by taking the
ring direct sum with the zero-ring on a direct complement (also called a trivial ex-
tension). Since a finite direct (product) sum of rings has identity if and only if each
component has identity (the finite decomposition of 1 into central idempotents),
the ring obtained by any trivial extension has no identity. Hence S-identity groups
are indecomposable.

The strongly identity groups are rare phenomenon.

Theorem 1. A group is S-identity if and only if it is isomorphic to Z(p), for a
prime number p, or isomorphic to Q.

Proof. Since there are no mixed indecomposable groups, we expect to find only
torsion or torsion-free S-identity groups. Let G be an identity group with multi-
plication denoted x · y for x, y ∈ G. For a prime p, consider the multiplication
(associative and both left and right distributive together with ·) x ◦ y = p(x · y).
Since this ring must be the zero ring or an unital ring, pG = 0 or pG = G for every
prime p. In the first case, since G is indecomposable (and so cocyclic) G ∼= Z(p). In
the second case, G is indecomposable divisible and so G ∼= Z(p∞) (impossible, be-
cause not identity) or G ∼= Q. Conversely, these two groups are S-identity. Indeed,
for every k = 1, ..., p−1 the multiplication by k (on Z(p)) has identity: it is just the

multiplicative inverse k
−1

in the field Z(p). As for Q, recall that multiplications
on Q are determined by nonzero squares a2 of rational numbers ([2], p. 291). That
is, for nonzero elements c, d ∈ Q there are nonzero rationals r, s such that c = ra
and d = sa, and c · d = (rs)a2. Since a 6= 0, 1 = a−1a is the identity for this
(commutative, associative and without zero divisors) multiplication. �

3. Torsion-free identity rings

It is readily checked that free groups and divisible torsion-free groups are identity
(more: a torsion-free group is a field-group if and only if it is divisible; see [1]).
Hence, if G = D(G) ⊕ H , is a decomposition with the divisible part D(G) and a
reduced direct complement H , using the ring direct product, it follows at once that
G is an identity-group whenever H is so.

For easy reference we mention here ([2], 123.2) a generalization of the Dorroh
ring extension.



2 SIMION BREAZ AND GRIGORE CĂLUGĂREANU

Proposition 2. Let R be an A-algebra, with A a commutative ring with identity.
Then the ring RA with R+

A = A+ ⊕ R+ and multiplication defined by (a1, r1) ·
(a2, r2) = (a1 · a2, a1r2 + a2r1 + r1r2) for all a1, a2 ∈ A, r1, r2 ∈ R, is a ring with
identity. The map R −→ RA via r 7−→ (0, r) is an embedding of R in RA as an
ideal, and RA/R ∼= A.

Corollary 3. For any group G, the direct product (sum) Z×G is an identity-group.

Proof. It suffices to take the trivial multiplication on G. �

In the torsion free case we have a converse for this corollary:

Proposition 4. Let X = {e, gi|i ∈ I} be a maximal independent system in G. The
following are equivalent:

(1) the partial operation defined by e · e = e, e · gi = gi · e = gi, gi · gk = 0
extends to a (ring) multiplication with identity e on G;

(2) the characteristic χ(e) is idempotent and minimum, and 〈e〉
∗
is a direct

summand of G.

Proof. (1)⇒(2) (i) In order to define e · e = e, since χ(ab) ≥ χ(a)χ(b), we need
χ(e) ≥ χ(e)2, and so (by definition of the characteristics product) χ(e) = χ(e)2,
i.e., e has idempotent characteristics. Further, since we need, e · a = a · e = a
for every a ∈ G, χ(a) ≥ χ(a)χ(e) = χ(e)χ(a) ≥ χ(e) shows that e has minimum
characteristic.

(ii) Denote by N = 〈gi|i ∈ I〉
∗
. Then N ·N = 0. Since 〈e〉

∗
∩N = 0, it remains

to prove that G = 〈e〉
∗
+N .

Let x ∈ G be arbitrary. Since every element depends on a maximal independent
set, there are nonnegative integers n, k such that nx = ke + y, with y ∈ N . If
d = (n, k), then d divides y and (1/d)y ∈ N (because N is pure). Thus, dividing
nx = ke+ y by d, we can suppose (n, k) = 1.

Multiplying the dependence relation by y yields nx · y = ky.
If uk + vn = 1, then y = uky + vny = unx · y + vny, and so n divides y. Since

(n, k) = 1, and n divides y, it also divides the identity e. Thus, G itself is n-divisible
(indeed, for every g ∈ G, g = g · e and n|e imply n|g) and x = (k/n)e+ (1/n)y, so
x ∈ 〈e〉

∗
+N (again (1/n)y ∈ N , because N is pure).

(2)⇒(1) Note that by (i) and (ii) it follows that N = 〈gi|i ∈ I〉
∗
is a direct

complement for 〈e〉∗. Moreover, since the type of e is idempotent then 〈e〉∗ has a
natural multiplication such that it becomes a ring isomorphic to a unital subring
P−∞Z of Q generated (as subring) by all 1

p
with p ∈ P , where P is the set of all

primes p with the property that 〈e〉∗ is p-divisible. Since N is a P−∞Z-module, we
can apply the previous proposition to obtain the conclusion. �

Remark. In the unital ring on G that occurs by this construction, 1 ∈ P−1Z

is the identity. Denoting it by e ∈ G, the multiplication (with identity e) on G
is given by linearly extending (over P−1Z) e · e = e, e · h = h · e = h, h · h1 = 0
(h, h1 ∈ H). Observe that the characteristic of χ(e) is idempotent and minimum
in G.

This way, torsion-free identity-groups which admit a Dorroh-like ring multipli-
cation are characterized.

Remark. In a torsion-free group, the subgroup purely generated by an element
of idempotent and minimum characteristic might not be a direct summand. For
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instance, consider two rank 1 nil groups H,K with types t(H) = (0, 1, 0, 1, ...) and
t(K) = (1, 0, 1, 0, ...). Then the direct sum H ⊕ K contains an element h + k of
(minimum and idempotent) characteristics (0, 0, ...), with χ(h) = (0, 1, 0, ...) and
χ(k) = (1, 0, 1, ...). But the subgroup purely generated by h + k is not a direct
summand.

For the case of mixed groups (by a mixed group we mean a genuine mixed group,
i.e. 0 6= T (G) 6= G), since there exist no nil mixed groups (Szele, 120.3 [2]), when
finding identity-groups, no mixed groups have to be excepted.

Recall (4.6.3, [1]): let R be a ring with trivial left annihilator and R = A + B
for subsets A,B of R. If A2 = B2 = 0 then R = 0.

Hence, a (direct) sum of two (nonzero) nil groups is not identity and so, a mixed
group with divisible torsion part and nil torsion-free complement is not identity.
But nil torsion-free groups are far of being known, so this covers only a few known
situations.

We first settle the case when the torsion-free part is divisible.

Proposition 5. A mixed group with divisible torsion-free part is identity if and
only if the torsion part is bounded.

Proof. Such groups are splitting and so have the form G = T (G) ⊕ (
⊕

Q) with
torsion part T (G). If R is a ring on G, it is proved in [1] (4.3.15), that any ring
with trivial annihilator on the group direct sum above is also a ring direct sum
on the components (i.e., it is fissible). Since identity rings have trivial annihilator,
and ring direct sums have identity if and only if the components have identities,
T (G) must be bounded. Conversely, D(G) =

⊕
Q is known to be identity and so,

if T (G) is bounded, G is identity. �

The second case we discuss is when the torsion part is not reduced.

Proposition 6. If the torsion part is not reduced, i.e., G = DT (G) ⊕ H with
(maximal) torsion divisible DT (G), and R is a ring with identity on G, then (a)
for any relevant prime relative to DT (G), H is not p-divisible and (b) hp(1) = 0
(in both H or G).

Proof. (a) As intersection of two ideals (the torsion part and the divisible part are
fully invariant subgroups), DT (G) is also an ideal which, being torsion divisible,
must be nil (ideal), i.e., t · t′ = t′ · t = 0 for every t, t′ ∈ DT (G).

If H is p-divisible then G = Z(p∞) ⊕ K and Z(p∞) annihilates R and so G
is not identity group. Indeed, let x ∈ R, a ∈ Z(p∞) with ord(a) = pk. Since
G is p-divisible, there is y ∈ G such that x = pky and it is readily checked that
a · x = x · a = 0.

(b) For any relevant prime p (relative to DT (G)) we show that 1 /∈ pG. Indeed,
otherwise 1 ∈ pG implies pG = G, the left member being ideal in R, which is
impossible: pG = p(T (G)⊕H) = pT (G)⊕ pH = T (G)⊕ pH < G. �

The third case is with a divisible torsion part, again splitting, so let R be a ring
on G = T (G)⊕ V , with reduced torsion-free V . Here we must except the (already
discussed) identity case when V has a cyclic direct summand.

If for a relevant prime p, V is p-divisible, then Z(p∞) annihilates all R and so G
is not identity.
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The remaining case is when pV 6= V for all relevant primes. Some groups of this
type are considered in [1](p. 8).

Suppose G = H⊕Z(p∞) with torsion-free not p-divisible H . Choose b ∈ H with
hp(b) = 0. For any positive integer n, choose an ∈ Z(p∞) with ord(an) = pn. The
map b⊗ b 7−→ an can be extended to an epimorphism H ⊗H −→ Z(pn).

Therefore a ring R with R+ = G can be constructed so that (H) ∩ Z(p∞) is an
arbitrary proper subgroup of Z(p∞).

However, these are not unital rings. Indeed, denote by R a ring constructed as
above. Then

R/(H) =
(H) + Z(p∞)

(H)
∼=

Z(p∞)

Z(pn)
∼= Z(p∞)

is a divisible p-group, which (not being bounded) is not identity. Hence so is G.

Finally, note that a consequence of Proposition 2 also gives mixed identity-
groups, using the Dorroh-like construction. That is

Corollary 7. Let P be a set of prime numbers and G a p-divisible group with zero
p-components for all p ∈ P . Then the direct sum (P−1Z)+ ⊕ G is an identity-
group with respect to the Dorroh-like multiplication defined by (q1, x1) · (q2, x2) =
(q1.q2, q1x2 + q2x1) for all q1, q2 ∈ P−1Z, x1, x2 ∈ G.

Here, for a set of prime numbers P , ∅ ⊆ P ⊆ P, P−1Z denotes the unital
subring of Q generated (as subring) by all 1

p
with p ∈ P . Obviously (P−1Z)+ is

p-divisible for all p ∈ P .

In closing this paper here are two results also related to our subject

Proposition 8. A group has only identity-subgroups if and only if it is a direct
sum of a bounded group and a torsion-free identity-group which has only identity-
subgroups.

Proof. Suppose G has only identity-subgroups. Since its torsion part must be
identity, T (G) (together with its subgroups) is bounded and so (Baer-Fomin) G
is splitting: G = T (G) ⊕ V . Here V , but also all its subgroups, must be identity
and so, must have an element of minimum and idempotent type. The converse is
obvious. �

Despite the fact that, having only identity-subgroups seems a strong condition
on torsion-free groups, we were not able to give a useful characterization for such
groups. Since the subgroups purely generated by elements must have idempotent
type (otherwise these are nil and so not identity) such groups have only idem-
potent types in their typeset (more, these types have only finitely many nonzero
components). Among finite rank torsion-free Butler groups (a Butler group is a
homomorphic image of a completely decomposable group) the quotient divisible
groups are exactly those which have only idempotent types (see [3]), 8.6).

Proposition 9. A group has only identity quotient groups if and only if it is a
direct sum of a bounded group and a finite rank free group.

Proof. Suppose G has only identity quotient groups. If G has infinite rank, there
is an epimorphism G −→ Q/Z, a contradiction.

Thus G has finite rank. If we take a torsion-free quotient of rank 1, this has
idempotent type. If this is not free, again we can find a torsion divisible quotient, a
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contradiction. Therefore, every rank 1 torsion-free quotient is free and so G (having
finite rank) has the decomposition we claimed: G = T ⊕ F with a finite rank free
F .

Finally, if some p-component is not bounded, again we can find an epimorphism
to a torsion divisible group, a contradiction.

Since bounded groups and free groups are identity-groups, the converse follows.
�
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Babeş Bolyai University, Department of Mathematics, Kogalniceanu Str 1,

400080, Cluj-Napoca, Romania

E-mail address: bodo@math.ubbcluj.ro and calu@math.ubbcluj.ro


