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1 Introduction

Expressing the idempotency of a 3×3 matrix amounts to a quadratic system
of 9 equations with 9 unknowns, which is clearly hard to handle. As examples
in this note show, Cayley-Hamilton’s theorem, which for a 3 × 3 matrix A
is

A3 − Tr(A)A2 +
1

2
(Tr2(A)− Tr(A2))A− det(A)I3 = 03,

does not characterize the idempotents. Therefore a characterization in terms
of trace, determinant and rank could be useful.
We did not find any reference for a characterization of the 3×3 idempotent

matrices, not over Z, nor over more general conditions on the base ring. In
this paper we complete this gap over some special integral (commutative)
domains.
We say that a ring R is an ID ring (see [5]) if every idempotent matrix

over R is similar to a diagonal one. Examples of ID rings include: division
rings, local rings, projective-free rings, PID’s, elementary divisor rings, unit-
regular rings and serial rings.
Recall (see [1]) that, since a matrix over an integral domain may be viewed

over the corresponding field of fractions, the definition and properties of the
rank are the usual ones, well-known from Linear Algebra.
Since diagonal idempotent matrices over domains have only 0 or 1 on

the diagonal, and idempotency is invariant to conjugations (similarity, as
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for square matrices), it follows that a necessary condition for a matrix E
(over an ID domain) to be idempotent is rank(E) = Tr(E), that is, the rank
equals the trace. Actually, this is the motive for considering in the sequel
only matrices over ID domains.
An integral domain is a GCD domain if every pair a, b of nonzero elements

has a greatest common divisor, denoted by gcd(a, b). GCD domains include
unique factorization domains, Bezout domains and valuation domains.
In Section 2, our main result is the characterization of the idempotent

3 × 3 matrices over ID, GCD (commutative) domains (e.g. Z). With this
new tool in hand, in Section 3 and 4 we revisit a conjecture made in [3]:
Every nil-clean 3× 3 integral matrix is exchange.

2 The characterization

First recall the Sylvester’s rank inequality : if F is a field and A,B ∈ Mn(F )
then rank(A) + rank(B)− n ≤ rank(AB).
As already mentioned, if R is an integral domain with quotient field F

and A ∈ Mn(R), rankR(A) = rankF (A) is the largest integer t such that
A contains a t × t submatrix whose determinant is nonzero. Equivalently,
this is the maximum number of linearly independent rows (or columns)
of A. Therefore Sylvester’s rank inequality holds for matrices over integral
domains.
So is the subadditivity of the rank, that is, rank(A + B) ≤ rank(A) +

rank(B).
Next we mention a predictable

Lemma 2.1 Let R be a GCD (commutative) domain and let C1, C2 be two
3× 1 nonzero columns. If C1, C2 are linearly dependent over R there exists
a column C and elements a1, a2 ∈ R such that Ci = aiC, i ∈ {1, 2}.

Proof. Denote Ci =

[

ci1
ci2
ci3

]

, i ∈ {1, 2} and assume b1C1 = b2C2 for some

0 6= bi ∈ R, i ∈ {1, 2}. Without loss of generality, suppose c11 6= 0 and so
c21 6= 0. Let d1 = gcd(c11; c21) and c11 = l1d1, c21 = l2d1 with gcd(l1; l2) = 1.
Since l1, l2 are coprime, from b1l1 = b2l2, l1 divides b2 and l2 divides b1,

say b1 = l2α, b2 = l1β. From b1l1 = b2l2 it follows that α = β. Further,
since b1c12 = b2c22, we obtain l2c12 = l1c22. Again, since l1, l2 are coprime,
l1 divides c12 and l2 divides c22, which we can write (say), c12 = l1d2 and
c22 = l2d2. Similarly, since b1c13 = b2c23 we show that l1 divides c13 and l2
divides c23, which we can write c13 = l1d3 and c23 = l2d3 for some d3 ∈ R.

Finally, if C =

[

d1
d2
d3

]

then indeed, Ci = liC, as desired. ⊓⊔

An analogous procedure, takes care of the case with three columns.
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Recall that for any n× n matrix A, up to sign, the first three coefficients
of the characteristic polynomial are 1, Tr(A), 1

2
(Tr2(A) − Tr(A2)) and the

last is det(A). The third coefficient equals the sum of the diagonal 2 × 2

minors of A, and for n = 3 this is

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣
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∣

+

∣
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a11 a13
a31 a33

∣

∣

∣

∣

+

∣

∣

∣

∣

a22 a23
a32 a33

∣

∣

∣

∣

=

a11a22+a11a33 +a22a33 −a12a21−a13a31−a23a32. To simplify the writing,
this coefficient will be denoted by t or even tA, if we need to emphasize the
matrix A.
Now we can prove our main result.

Theorem 2.2 A 3× 3 matrix E over an ID, GCD domain R is nontrivial
idempotent if and only if det(E) = 0, rank(E) = Tr(E) = 1 + 1

2
(Tr2(E) −

Tr(E2)) and rank(E) + rank(I3 − E) = 3.

Proof. Suppose E = [eij ], 1 ≤ i, j ≤ 3. Then t := tE = e11e22 + e11e33 +
e22e33 − e12e21 − e13e31 − e23e32.
By Cayley-Hamilton’s theorem, we can write

E3 − Tr(E)E2 + tE − detE · I3 = 03.

To show the conditions are necessary, suppose E = E2. Then det(E)2 =
det(E) ∈ {0, 1} and by replacement we get

(1− Tr(E) + t)E = detE · I3.

We go into two cases.
If 1 − Tr(E) + t 6= 0, then E is a scalar matrix and we can show that

E ∈ {03, I3}. Indeed, either det(E) = 0 and then E = 03, or else, det(E) = 1
and if E = aI3, the equality E = E2 gives a = a2 and since detE = 1, a = 1
and E = I3 follow.
In the remaining case, 1 − Tr(E) + t = 0 and so det(E) = 0, i.e. all

nontrivial idempotents satisfy these two (necessary) conditions.
As for the third condition, we use the Sylvester’s rank inequality rank(E)+

rank(I3−E)−3 ≤ rank(E(I3−E)) = 0, for rank(E)+rank(I3−E) ≤ 3 and
the subadditivity rank(E+I3−E) = rank(I3) = 3 ≤ rank(E)+rank(I3−E),
for the opposite inequality.
Next, we show the conditions are sufficient. Since det(E) = 0, rank(E) ≤

2. Further, Tr(E) = 1 + t shows that E 6= 03, so rank(E) ∈ {1, 2}.
In the first case, notice that if rank(E) = 1 then t = 0 and so Tr(E) = 1

follows from Tr(E) = 1 + t.
In this case, by Cayley-Hamilton’s theorem, we have E3 = E2 which

generally does not imply E2 = E (see example 4 below).
However, if rank(E) = Tr(E) = 1, it does.
A 3×3 matrixA has rank 1 if and only if any two (say) columns are linearly

dependent. As shown in the previous lemma, the columns are multiples
of a common column. Simplifying the writing, we can suppose E has one
of the three following forms: [C, sC, vC], [0, C, sC], [0, 0, C] where s and v
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are elements of R and C is a column with at least one nonzero entry. If

C =

[

a1
a2
a3

]

and we fulfill the condition Tr(E) = 1, it follows that E is in one

of the following three forms:

E1 =

[

1− sa2 − va3 s(1− sa2 − va3) v(1− sa2 − va3)
a2 sa2 va2
a3 sa3 va3

]

,

E2 =

[

0 a1 sa1
0 1− sa3 s(1− sa3)
0 a3 sa3

]

, E3 =

[

0 0 a
0 0 b
0 0 1

]

. It can be checked that all

these (rank 1) matrices are indeed, idempotent.
Notice that in this case, we do not use rank(E) + rank(I3 − E) = 3.
In the second case, rank(E) = Tr(E) = 2 and Tr(E) = 1 + tE yields

tE = 1.
Observe that in this case Tr(I3 − E) = 3 − 2 = 1 and tI3−E = tE + 3 −

2Tr(E) = 0.
Since rank(E) = 2 implies rank(I3−E) = 1 by the additional hypothesis,

this case reduces to the first one. This is because, if I3 − E is idempotent,
so is E (its complementary idempotent).
In this case, by Cayley-Hamilton’s theorem, we have E(E − I3)

2 = 03
which generally does not imply E2 = E (see example 5 below). ⊓⊔

By Eij we denote the 3×3 matrix with all entries zero excepting the (i, j)
entry which is 1.

Examples. 1) E11 + E23 =

[

1 0 0
0 0 1
0 0 0

]

has trace 1 but rank 2 so it is not

idempotent: the square is E11.

2) 2E11 +E23 =

[

2 0 0
0 0 1
0 0 0

]

has both trace and rank 2, but t = 0 so it is not

idempotent: the square is 4E11.

3) E = E11 + E22 + E23 =

[

1 0 0
0 1 1
0 0 0

]

has both trace and rank 2 and also

t = 1. Moreover, I3−E =

[

0 0 0
0 0 −1
0 0 1

]

so rank(E)+rank(I3−E) = 2+1 = 3.

It is (indeed) idempotent.

4) Take A =

[

1 0 1
0 0 0
0 0 −1

]

. Then A3 = A2 = E11 + E33 6= A (i.e. A is not

idempotent) but Tr(A) = 2 = rank(A), t = 1 but rank(A) = rank(I3−A) =
2.
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5) The matrix C =

[

1 1 0
0 1 0
0 0 0

]

has both trace and rank 2 and also t = 1.

It verifies C(C − I3)
2 = 03 but it is not idempotent. Again, rank(C) =

rank(I3 − C) = 2.

Actually, all matrices of type C =

[

1 a b
0 1 c
0 0 0

]

satisfy rank(C) = Tr(C) = 2

and t = 1 but C2 =

[

1 2a b+ ac
0 1 c
0 0 0

]

6= C for many choices of a, b, c.

6) Observe that if char(R) = 2, there are idempotents E 6= 03 with

det(E) = Tr(E) = 0. An example is E =

[

0 1 1
1 0 1
1 1 0

]

with E2 =

[

2 1 1
1 2 1
1 1 2

]

,

detE = Tr(E) = 0 and Tr(E2) = 2 = 0.

3 A conjecture revisited

In [3], we can find the following

Conjecture 3.1 Every nil-clean 3× 3 integral matrix is exchange.

When writing the paper, this characterization of 3 × 3 idempotents was
not known to the authors.
The characterization allows a different approach in order to prove this

conjecture. Indeed, idempotents appear twice in this conjecture: in the def-
inition of nil-clean matrices, i.e. these are sums of idempotents and nilpo-
tents, and in the characterization of exchange elements, i.e. in a ring R,
a ∈ R is exchange if and only if there exists m ∈ R (called exchanger in [3])
such that a+m(a− a2) is idempotent.
Since

Proposition 3.2 Let R be any ring, a ∈ R, and suppose that a = e + t
where e2 = e and t2 = 0. Then a is exchange in R.

in the remaining nonzero case, we will assume the nilpotent, in the nil-
clean decomposition of the matrix A, has index 3, i.e. A = E + T with
E2 = E and T 2 6= 03 = T 3. As for E we can suppose it is nontrivial
idempotent: indeed, nilpotents and unipotents are clean and so exchange.

Recall that every nilpotent matrix over a field is similar to a block diago-

nal matrix









B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bk









, where each block Bi is a shift matrix (possibly
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of different sizes). Actually, this form is a special case of the Jordan canon-
ical form for matrices. A shift matrix has 1’s along the superdiagonal and

0’s everywhere else, i.e. S =













0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...
0 0 0 · · · 1
0 0 0 · · · 0













, as n× n matrix.

The following result is proved in [4]:

Theorem 3.3 The following are equivalent for a ring R:
(i) Every nilpotent matrix over R is similar to a block diagonal matrix

with each block a shift matrix (possibly of different sizes).
(ii) R is a division ring.

In the sequel, we prove the conjecture for all nil-clean matrices whose
nilpotent (of index 3) is similar to the 3× 3 shift.
This is a special case (over Z), because over any commutative domain D,

there are plenty of nilpotent nonzero matrices which are not similar to the

corresponding shift. For example,

[

0 2
0 0

]

is a nonzero nilpotent of M2(Z)

which is not similar to E12, the nonzero 2× 2 shift.
However, it can be proved that

Proposition 3.4 Every nonzero nilpotent 2× 2 matrix over a commutative
GCD domain R is similar to rE12, for some r ∈ R.

Proof. We are looking for an invertible matrix U = (uij) such that TU =

U(rE12) with T =

[

x y
z −x

]

and x2 + yz = 0.

Let d = gcd(x; y) and denote x = dx1, y = dy1 with gcd(x1; y1) = 1. Then
d2x2

1
= −dy1z and since gcd(x1; y1) = 1 implies gcd(x2

1
; y1) = 1, it follows y1

divides d. Set d = y1y2 and so T =

[

x1y1y2 y2
1
y2

−x2

1
y2 −x1y1y2

]

= y2

[

x1y1 y2
1

−x2

1
−x1y1

]

=

y2T
′.

Since gcd(x1; y1) = 1 there exist s, t ∈ R such that sx1 + ty1 = 1. Take

U =

[

y1 s
−x1 t

]

which is invertible (indeed, U−1 =

[

t −s
x1 y1

]

). One can check

T ′U =

[

0 y1
0 −x1

]

= UE12, so r = y2. ⊓⊔

The 3× 3 analogue is

Proposition 3.5 Every index 3 nilpotent 3× 3 matrix over a commutative
GCD domain R is similar to rE12 + uE23, for some r, u ∈ R.
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Notice that the possible nonzero 3× 3 block diagonal matrices with each

block a shift matrix are S =

[

0 1 0
0 0 1
0 0 0

]

and S′ =

[

0 1 0
0 0 0
0 0 0

]

, where S′ has index

two and only S has index three (S2 = E13 6= 03).
Here is what we prove

Theorem 3.6 The nil-clean 3×3 integral matrices whose nilpotent (of index
3) is similar to the shift S, are exchange.

Proof. For A = E + S we have to find an exchanger M such that A +
M(A−A2) is an idempotent. As observed in the previous section, it suffices
to consider E any (nontrivial) trace = rank = 1, 3× 3 idempotent matrix.
Also noticed in the previous section, it suffices to find exchangers for E, any
of the following matrices: [0, 0, C], [0, C, sC], [C, sC, vC] where s and v are
some integers and C is a column with at least one nonzero entry.
There are three cases to discuss.

Case 1. The idempotent is of form [0, 0, C], that is, E =

[

0 0 a
0 0 b
0 0 1

]

and

A =

[

0 1 a
0 0 1 + b
0 0 1

]

. Here ES = 03, SE =

[

0 0 b
0 0 1
0 0 0

]

, A2 = E + SE + E13 =

[

0 0 a+ b+ 1
0 0 b+ 1
0 0 1

]

, A−A2 =

[

0 1 −1− b
0 0 0
0 0 0

]

. Denoting M = [mij], 1 ≤ i, j ≤ 3

we get A + M(A − A2) =

[

0 1 +m11 a− (1 + b)m11

0 m21 (1 + b)(1−m21)
0 m31 1− (1 + b)m31

]

. We chose m21 =

m31 = 0 in order to have trace = 1, andm11 = −1 in order to vanish the sec-
ond column. Since the second and third columns of M play no rôle, we chose

these zero. Hence for M =

[

−1 0 0
0 0 0
0 0 0

]

, A + M(A − A2) =

[

0 0 a+ b+ 1
0 0 b+ 1
0 0 1

]

which is indeed idempotent of the same type as E.

Case 2. Take E = [0, C, sC] =

[

0 a1 sa1
0 1− sa3 s(1− sa3)
0 a3 sa3

]

. Now A − A2 =

(E+S)− (E+S)2 = S−E13 −ES−SE =

[

0 sa3 −1− a1 − s(1− sa3)
0 −a3 0
0 0 −a3

]

and, denoting b := −1− a1 − s(1− sa3) we obtain

M(A−A2) =

[

0 (m11s−m12)a3 m11b−m13a3
0 (m21s−m22)a3 m21b−m23a3
0 (m31s−m32)a3 m31b−m33a3

]

.

Here Tr(M(A−A2)) = (m21s−m22−m33)a3+m31b. An exchanger must
be found for arbitrary a1, a3 and s. For any choice such that a3 and b are not
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coprime, there are no mij’s such that Tr(M(A − A2)) = 1 (e.g., a1 = −3,
a3 = 2, s = 0 and so b = 2).
Hence the mij ’s must be chosen to give Tr(M(A−A2)) = 0 for arbitrary

a1, a3 and s. Hence

m21s = m22 +m33 and m31 = 0 .

Moreover, since then Tr(A+M(A−A2)) = 1 we also need rank(A+M(A−
A2)) = 1.
Here A+M(A−A2) =
[

0 1 + a1 + (m11s−m12)a3 sa1 +m11b−m13a3
0 1 + (m33 − s)a3 1 + s(1− sa3) +m21b−m23a3
0 (1−m32)a3 (s−m33)a3

]

has trace 1. For rank 1, we need dependent columns (or rows).
We will chose the other entries in the third row of M , in order to have

zero 3-rd row in A+M(A−A2), that is m32 = 1 and m33 = s.
Then m22 = (m21 − 1)s and A+M(A−A2) =
[

0 1 + a1 + (m11s−m12)a3 sa1 +m11b−m13a3
0 1 1 + s(1− sa3) +m21b−m23a3
0 0 0

]

and we have to chose m11,m12,m13,m21 and m23 in order to get the rank
1, that is,

det

[

1 + a1 + (m11s−m12)a3 sa1 +m11b−m13a3
1 1 + s(1− sa3) +m21b−m23a3

]

= 0.

Equivalently, sa1 +m11b−m13a3 = [1 + a1 + (m11s−m12)a3][1 + s(1−
sa3) +m21b−m23a3].
Further we chose

m21 = 1 and m11 = a1

(and so m22 = 0). The equality reduces to sa1 − a1[1 + a1 + s(1− sa3)]−
m13a3 = [1 + a1 + (a1s−m12)a3](−a1 −m23a3) and, by taking

m23 = 0

to (dividing by a3) m13 = s2a1 + sa2
1
−m12a1 with infinitely many possible

choices for m12. For

m12 = 0

we get m13 = sa1(s+ a1).

Hence finally M =

[

a1 0 sa1(s+ a1)
1 0 0
0 1 s

]

and

A + M(A − A2) =

[

0 1 + a1 + sa1a3 −a1(1 + a1 + sa1a3)
0 1 −a1
0 0 0

]

. The condi-

tions in Theorem 2.2 can be easily checked: rank = trace =1, t = 0 and
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rank (

[

−1 1 + a1 + sa1a3 −a1(1 + a1 + sa1a3)
0 0 −a1
0 0 −1

]

= 2.

One can verify directly that

[

0 c −a1c
0 1 −a1
0 0 0

]2

=

[

0 c −a1c
0 1 −a1
0 0 0

]

, so matrices of

this form are indeed idempotent, of the same type as E.

Case 3. Take E = [C, sC, vC] =

=

[

1− sa2 − va3 s(1− sa2 − va3) v(1− sa2 − va3)
a2 sa2 va2
a3 sa3 va3

]

and so

A = E + S =

[

1− sa2 − va3 1 + s(1− sa2 − va3) v(1− sa2 − va3)
a2 sa2 1 + va2
a3 sa3 va3

]

. As

above A−A2 = S − E13 − ES − SE =
[

−a2 va3 −1− s(1− sa2 − va3)− va2
−a3 −a2 − sa3 1− sa2 − va3
0 −a3 −sa3

]

and denoting b = 1− sa2 −

va3,

=

[

−a2 va3 −1− sb− va2
−a3 −a2 − sa3 b
0 −a3 −sa3

]

.

Finally the columns of A+M(A−A2) are
[

1− sa2 − va3 −m11a2 −m12a3
a2 −m21a2 −m22a3
a3 −m31a2 −m32a3

]

,

[

1+ s(1− sa2 − va3) +m11va3 −m12(a2 + sa3)−m13a3
sa2 +m21va3 −m22(a2 + sa3)−m23a3
sa3 +m31va3 −m32(a2 + sa3)−m33a3

]

and

[

v(1− sa2 − va3)−m11(1 + sb+ va2) +m12b−m13sa3
1+ va2 −m21(1 + sb+ va2) +m22b−m23sa3
va3 −m31(1 + sb+ va2) +m32b−m33sa3

]

.

Using computer aid, we chose M =

[

· · ·
1 0 v
0 1 0

]

.

Replacing we get A + M(A − A2) =

[

0 sa2 −s(1− sa2)
0 −a2 1− sa2

]

with (so far)

the same first row.

Moreover with m11 = −s, m12 = −v we obtain A+M(A−A2) =
[

1 1 + s+ (v − s2)a2 − (sv +m13)a3 s[1 + s+ (v − s2)a2 − (sv +m13)a3]
0 sa2 −s(1− sa2)
0 −a2 1− sa2

]

.
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Finally m13 is arbitrary since matrices of type

[

1 α sα
0 sa2 −s(1− sa2)
0 −a2 1− sa2

]

are

idempotent for any α. Indeed Tr(A+M(A−A2)) = rank(A+M(A−A2)) =
2, t = 1 and Tr(I3 − A −M(A − A2)) = rank(I3 − A − M(A − A2)) = 1.

Therefore (choosingm13 = 0) the exchanger in this case isM =

[

−s −v 0
1 0 v
0 1 0

]

.

⊓⊔

Example. For A =

[

−13 −25 −39
1 2 4
4 8 12

]

and M =

[

−2 −3 −3
1 0 3
0 1 0

]

we have

M(A−A2) =

[

14 15 19
−1 0 −2
−4 −9 −13

]

, A+M(A−A2) =

[

1 −10 20
0 2 2
0 −1 −1

]

(here a2 = 1,

a3 = 4 , s = 2, v = 3; b = −13).

As already noticed in the previous section, any 3× 3 index 3 nilpotent is
similar to a generalized shift Sg = rE12 + uE23.
In trying to prove the (whole) conjecture, one has to replace the shift S

by Sg.
We were able to do this in the first case of the previous proof, and made

some progress with the second and third case.

Proposition 3.7 The nil-clean 3 × 3 integral matrices with idempotent of
form [0, 0, C] are exchange.

Proof. The proof goes along the lines of the (previous) special case r = v =

1. Take A = E + Sg with E =

[

0 0 a
0 0 b
0 0 1

]

and Sg =

[

0 r 0
0 0 u
0 0 0

]

(S2

g = ruE13).

Then ESg = 03, SgE =

[

0 0 rb
0 0 u
0 0 0

]

, A − A2 =

[

0 r −r(u+ b)
0 0 0
0 0 0

]

. Denoting

M = [mij ], 1 ≤ i, j ≤ 3 we get

A + M(A − A2) =

[

0 r + rm11 a− r(u+ b)m11

0 rm21 b+ s− r(u+ b)m21

0 rm31 1− r(u+ b)m31

]

. We chose m21 =

m31 = 0 in order to have trace = 1, and m11 = −1 in order to vanish
the second column. Since the second and third columns of M play no rôle,

we chose these zero. Hence for M =

[

−1 0 0
0 0 0
0 0 0

]

(the same exchanger), A +

M(A− A2) =

[

0 0 a+ r(b+ u)
0 0 b+ u
0 0 1

]

which is an idempotent of the same type

as E. ⊓⊔
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4 The other cases

The second (general) case. E = [0, C, sC] =

[

0 a1 sa1
0 1− sa3 s(1− sa3)
0 a3 sa3

]

and

A = E+Sg, again going along the lines of the previous proof, the following
can be done.

For Sg =

[

0 r 0
0 0 u
0 0 0

]

, S2

g = ruE13, A =

[

0 r + a1 sa1
0 1− sa3 u+ s(1− sa3)
0 a3 sa3

]

, ESg =

[

0 0 ua1
0 0 u(1− sa3)
0 0 ua3

]

and SgE =

[

0 r(1− sa3) rs(1− sa3)
0 ua3 usa3
0 0 0

]

.

So A−A2 = Sg − ruE13 − ESg − SgE =
[

0 rsa3 −ua1 − rs(1− sa3)− ru
0 −ua3 0
0 0 −ua3

]

. Denoting M = [mij ], 1 ≤ i, j ≤ 3

and b = −ua1 − rs(1− sa3)− ru we get

M(A − A2) =

[

0 (m11rs−m12u)a3 m11b−m13ua3
0 (m21rs−m22u)a3 m21b−m23ua3
0 (m31rs−m32u)a3 m31b−m33ua3

]

and A + M(A −

A2) =
[

0 r + a1 + (m11rs−m12u)a3 sa1 +m11b−m13ua3
0 1− sa3 + (m21rs−m22u)a3 u+ s(1− sa3) +m21b−m23ua3
0 a3 + (m31rs−m32u)a3 sa3 +m31b−m33ua3

]

.

Here Tr(M(A−A2)) = (m21rs−m22u−m33u)a3 +m31b. An exchanger
must be found for arbitrary a1, a3 and s. For any choice such that a3 and
b are not coprime, there are no mij’s such that Tr(M(A − A2)) = 1 (e.g.,
a1 = −3, a3 = 2 and s = 0: b = 2).
Hence the mij ’s must be chosen to give Tr(M(A−A2)) = 0 for arbitrary

a1, a3 and s. Hence

m21rs = (m22 +m33)v and m31 = 0 .

Moreover, since then Tr(A + M(A − A2)) = 1 we also need rank(A +
M(A−A2)) = 1.
Here A+M(A−A2) =
[

0 r + a1 + (m11rs−m12u)a3 sa1 +m11b−m13ua3
0 1 + (m33u− s)a3 u+ s(1− sa3) +m21b−m23ua3
0 (1−m32u)a3 (s−m33u)a3

]

has trace 1. For rank 1, we need dependent columns (or rows).
This reduces to

det

[

r + a1 + (m11rs−m12u)a3 sa1 +m11b−m13ua3
(1−m32u)a3 (s−m33u)a3

]

=

det

[

1 + (m33u− s)a3 u+ s(1− sa3) +m21b−m23ua3
(1−m32u)a3 (s−m33u)a3

]

= 0, that is
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[r+a1+(m11rs−m12u)a3](s−m33u) = [sa1+m11b−m13ua3](1−m32u)
and

[1+(m33u−s)a3](s−m33u) = [u+s(1−sa3)+m21b−m23ua3](1−m32u)
[both equalities divided by a3].

Notice that, as in the special r = u = 1 case, the vanishing of the third
row of A+M(A−A2) cannot be done, unless u = 1.

We were not able to determine the entries of a suitable exchanger.

By computer aid, the third row of M , [0,m32,m33] could be [0, 1, 1] or
[0, 1, s] or [0, 1, 0] or some others. In each case, computation yields a com-
plementary condition on a1, a3, r, u and s.

Trying to find a counterexample for the conjecture, with E = [0, C, sC]
and Sg = rE12 + uE23, we have successively gathered the following non-
conditions:

u 6= 1, u not dividing s, a3 not dividing u, a3 not dividing rs, a3 not
dividing u+ s− 2, s+ u 6= a3 and a3 not dividing ua1 − 1.

The selection a1 = 2, a3 = 7, s = 3, r = 2 and u = 5 satisfies all these. The

resulting 3× 3 matrix is A =

[

0 4 6
0 −20 −55
0 7 21

]

which still is exchange: among

the exchangers we find

[

−1 x y
0 0 −2
0 1 0

]

with [x, y] ∈ {[−2,−2], [2,−5], [−6, 1]}.

Next attempt: m32 = 1, m33 = 0 = m21.

The second equation: (1− sa3)s = [v+ s(1− sa3)+m21b−m23ua3](1− v)
or v +m21b−m23ua3 = u[u+ s(1− sa3) +m21b−m23ua3]

If m21 = 0 (as in example), 1−m23a3 = u+ s(1− sa3)−m23ua3 (divided
by u). Or (1− u)(1−m23a3) = s(1− sa3) so now 1− u divides s(1− sa3).

Here a1 = 2, a3 = 7, s = 3, r = 2 and u = 5: indeed 4 divides 20.

So we add another non-condition: 1 − u not dividing s(1− sa3): u = 10.

So A =

[

0 4 6
0 −20 −50
0 7 21

]

.

Nothing until z = 6 (inclusive), but for z = 7 we found M =

[

6 3 6
0 3 4
7 2 5

]

,

but also M =

[

7 x y
−5 −5 −7
−7 1 −6

]

[x, y] ∈ {[−5, 5], [−2,−6], [1, 7]}.

We did not continue our attempts in this case.
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The third case. The computation goes along the lines of the r = u = 1

case. A = E+Sg =

[

1− sa2 − va3 r + s(1− sa2 − va3) v(1− sa2 − va3)
a2 sa2 u+ va2
a3 sa3 va3

]

,

ESg =

[

0 r(1− sa2 − va3) us(1− sa2 − va3)
0 ra2 usa2
0 ra3 usa3

]

,

SgE =

[

ra2 rsa2 rva2
ua3 usa3 uva3
0 0 0

]

and A−A2 = Sg − ruE13 − ESg − SgE =

[

−ra2 rva3 −us(1− sa2 − va3)− rva2 − ru
−ua3 −ra2 − usa3 u(1− sa2 − va3)
0 −ra3 −usa3

]

.

Denoting b = u(1− sa2 − va3) we have

A − A2 =

[

−ra2 rva3 −sb− rva2 − ru
−ua3 −ra2 − usa3 b
0 −ra3 −usa3

]

. Denoting M = [mij ],

1 ≤ i, j ≤ 3 the columns
of A+M(A−A2) are
[

1− sa2 − va3 −m11ra2 −m12ua3
a2 −m21ra2 −m22ua3
a3 −m31ra2 −m32ua3

]

,

[

r + s(1− sa2 − va3) +m11rva3 −m12(ra2 + usa3)−m13ra3
sa2 +m21rva3 −m22(ra2 + usa3)−m23ra3
sa3 +m31rva3 −m32(ra2 + usa3)−m33ra3

]

,

and

[

v(1− sa2 − va3)−m11(sb+ rva2 + ru) +m12b−m13usa3
u+ va2 −m21(sb+ rva2 + ru) +m22b−m23usa3
va3 −m31(sb+ rva2 + ru) +m32b−m33usa3

]

.

Continuation with M =

[

· · ·
1 0 v
0 1 0

]

is not very bad but seems not likely

[unlikely to get rank=trace =2]: A+M(A−A2) =
[

· · ·
(1− r)a2 sa2 (−s+ r − 1)u+ [s2u+ (1− r)v]a2
(1− u)a3 −ra2 + (1− u)sa3 u(1− sa2) + (1− u)va3

]

.

For r = u = 1 this was already A+M(A−A2) =

[

· · ·
0 sa2 −s(1− sa2)
0 −a2 1− sa2

]

.

We did not continue our attempts in this case.

In trying to find a counterexample for the conjecture, we made the fol-
lowing selection:
Example. A = E + Sg =
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[

−13 −26 −39
1 2 3
4 8 12

]

+

[

0 5 0
0 0 6
0 0 0

]

=

[

−13 −21 −39
1 2 9
4 8 12

]

no exchanger until (incl.)

z = 11. Here a2 = 1, a3 = 4, s = 2, v = 3, r = 5, u = 6 and b = u(1− sa2 −
va3) = −78. Now A−A2 =
[

−ra2 rva3 −sb− rva2 − ru
−ua3 −ra2 − usa3 b
0 −ra3 −usa3

]

=

[

−5 60 111
−24 −53 −78
0 −20 −48

]

.

Denoting M = [mij ], 1 ≤ i, j ≤ 3 we get M(A−A2) =
[

−5m11 − 24m12 60m11 − 53m12 − 20m13 111m11 − 78m12b− 48m13

−5m21 − 24m22 60m21 − 53m22 − 20m23 111m21 − 78m22b− 48m23

−5m31 − 24m32 60m31 − 53m32 − 20m33 111m31 − 78m32b− 48m33

]

and the columns of D := A+M(A−A2) are
[

−13− 5m11 − 24m12

1− 5m21 − 24m22

4− 5m31 − 24m32

]

,

[

−21 + 60m11 − 53m12 − 20m13

2 + 60m21 − 53m22 − 20m23

8 + 60m31 − 53m32 − 20m33

]

and

[

−39 + 111m11 − 78m12b− 48m13

9 + 111m21 − 78m22b− 48m23

12 + 111m31 − 78m32b− 48m33

]

.

The trace is
Tr(D) = 1 + Tr(M(A − A2) = 1 − 5m11 − 24m12 + 60m21 − 53m22 −

20m23 + 111m31 − 78m32b− 48m33.
Tr(I3−D) = 2−Tr(M(A−A2) = 2−(−5m11−24m12+60m21−53m22−

20m23 + 111m31 − 78m32b− 48m33).
How to prove this cannot be idempotent ?

In [3], the nil-clean matrices discussed had (by similarity) the idempotent
E11 or E11 + E22.
Since Tr(E) = rank(E) = 1, E is similar to E11. We look for a conjugation.
EU = UE11 amounts to
[

−13(u11 + 2u21 + 3u31) −13(u12 + 2u22 + 3u32) −13(u13 + 2u23 + 3u33)
u11 + 2u21 + 3u31 u12 + 2u22 + 3u32 u13 + 2u23 + 3u33

4(u11 + 2u21 + 3u31) 4(u12 + 2u22 + 3u32) 4(u13 + 2u23 + 3u33)

]

=

[

u11 0 0
u21 0 0
u31 0 0

]

with det(U) = ±1. Hence

−13(u11 + 2u21 + 3u31) = u11 or 14u11 + 26u21 + 39u31 = 0
u11 + 2u21 + 3u31 = u21 or u11 + u21 + 3u31 = 0
4(u11 + 2u21 + 3u31) = u31 or 4u11 + 8u21 + 11u31 = 0
and
u12 + 2u22 + 3u32 = u13 + 2u23 + 3u33 = 0.
The first 3 equation form a homogeneous linear system with zero deter-

minant, so we can chose only
u11 + u21 + 3u31 = 0 (multiplied by −4 and added to the next)
4u11 + 8u21 + 11u31 = 0 or
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4u21 = u31 and u11 = −13u21.

An example is U =

[

−13 2 −1
1 −1 −1
4 0 1

]

for which U−1E =

[

1 2 3
0 0 0
0 0 0

]

and

U−1EU = E11.
Then the similar nil-clean matrix with E11 idempotent is A′ = E11 +

U−1SgU = E11 +

[

53 −5 7
241 −25 29
−212 20 −28

]

.

Here S2

g =

[

120 0 30
600 0 150
−480 0 −120

]

and (indeed) S3

g = 03.

However, for A′ =

[

53 −5 7
241 −25 29
−212 20 −28

]

, an exchanger was fast found for

z = 6: M =

[

1 0 0
5 −1 6
−4 0 −1

]

.

The idempotent is A′ +M(A′ −A′2) =

[

−119 −5 −23
2856 120 552
0 0 0

]

.
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