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Abstract. Hypergroups associated with modular lattices, respectively compactly
generated lattices, are studied and characterized.

Introduction

The first hypergroup studied in this paper was introduced by Comer (in [1])
and furthermore studied by Konstantinidou M., Serafimidis K. and Mittas J.
(see [5] and [6]).

If (L,V,A) is a lattice, then for every (a,b) € L% set aob = {z € L |
aVz = bVx = aVb}. We mention that a particular case of this hyperoperation
had been already considered by Iacovlev B.V. (see [4]) and later by Scoppola
C.M. (see [7]).

In what follows, we shall use notations and terminology from [2].

The following characterization (see [1], [5] and [6]) holds:

0. Theorem. The lattice (L,V,A) is modular iff < L,o > is a join space.

In this paper, we shall give necessary and sufficient conditions in a join
space (H, o), such that H has a lattice structure (H,V, A), so that

aob={z€ HlaVz=bVz=aVb},

that is, so that the join space (H, o) is associated with the (modular) lattice
(H,V,A).
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We also characterize the hypergroups associated with (modular) com-
pactly generated lattices. Finally, the subhypergroups of hypergroups asso-
ciated with lattices and the isomorphism of such hypergroups are analysed.

§1. First, we shall mention some important (for which follows) properties of
a join space < L, o > associated with a modular lattice (L, V, A).
One can verify these properties, by the equivalence x € aoa <= 2z < a.

1. Proposition. For a modular lattice L, the associated join space < L,o >
satisfies the following properties:

(i) Vae L:a€aoa;aoa isa subhypergroup of < L o >;
(ii) ¥(a,b) € L% : U zoz = (aVb)o(aVb)

{a,b}Cxox
(i1l

V(a,b) € L* :a0anNbobC(aAb)o(aAb) and aAb € aoanbob;

(iv) Y(a,b) € L? : {a,b} Caob=>a = b;

(vi

V(a,b)€ L? :aob=[ao (aVb)]N[bo(aVb);

Vll

)
)
(v) Va€L:acaca=aoa
)
i)

ifa < baob={b}U{zeljz<bz|le,BycL:a<y<bz <y},
where we denote by z||a two incomparable elements of L.

We notice that in a join space < L, o >, associated with a modular lattice,
the following condition holds:

(o) Y(a,b)e L Az L,Atc L: {a,b} Cxoxz, ﬂ zox =tot, aob=aot N bot.
{a,b}Cxoz
Moreover, if a € to ¢ — {t}, then

u€llucetot—{t},udaoa,ag¢ uou, Byc L: }
aot =t} U .
t { a€yoy—{yhueyoy—{yhyetot—{t}

The condition («) is equivalent to the set of conditions (ii), (vi) and (vii),
written using only the hyperoperation ”o” (not the order ”<”).

2. Theorem. A join space < H,o > is associated with a lattice (H,V,N\) iff
it satisfies () and the following conditions:

(1)
(2) Va€ H:aocaoca=uaoaq;
(3)
(4)

V(e,b) € H* : a/b=aob;

V(a,b) € H*,As€aocaNbob:aocanbobC sos;

V(a,b) € H*: {a,b} Caob<=a=0».
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Proof. From Proposition 1, it follows that the above conditions are necessary.
For the sufficiency, we define a binary relation on H as follows:

a§b<=>a€b0b¢(g>b€a0b.

This is an order on H according to (4) [reflexivity: Va € H : a € a o ],
(2) [transitivity: a €bobb € coc=>a€cocococ=cococ=coc|and
again (4) [antisymmetry].

In order to obtain a lattice structure, for arbitrary elements a,b € H we

ﬂ ror=tot

{ab}Croz

and verify that t = sup(a,b). Indeed, {a,b} € tot so that ¢ < t,b < ¢
moreover, if ¢ < s,b < s, then

consider t, where

tetot= ﬂ zox Csos
{a,b}Cxox

because {a,b} € s o s sot < s. The antisymmetry proves that ¢ is unique. On
the other hand, for an arbitrary element (a,b) € H?, we consider s, such that

s€aoaNbob:aocanNbobCsos

and verify that s = inf(a,b). Obviously, s < a,s < band if u < a,u < b

then u € acaNbob C so0s, sou < s. The element s is unique because

{s1,82} CacaNbobC s;0s8Nsy0s, implies 81 € 83035, and s, € sy 0.3 and

so 81 = sy. Hence, (H,sup, inf) is a lattice. Its modularity is easily checked.
In what follows, we use the standard notations

sup(a,b) = a Vb, inf(a,b) =a Ab.

Now, we verify the inclusion aob C {z € HlaVz =bV z =a V b} :letz € aob;
from {a,b} Ctot wheret =aVbitresults z € aob Ctototot =totandso
z € (aVb)o(aVb)thatisz < aVbh HenceaVz <aVband bVz < aVb. But
{b,z} C (bvz)o(bVz) and so box C (bVx)o(bVz)o(bVz)o(bVz) = (bVz)o(bVz).
Using (1), we have s € acb=aqa/bandsoa €boz C (bVz)o(bV z) whence
a <bVzsoaVb < bVz. Weobtain aVb = bV z. Similarly, we have aVb = aVz
and hence z € {z € HljaVz=bVz=aVb}.

Conversely, take z € H such that aVz =bVz =a Vb

Itresultsz <aVz=bVz=aVb.

We distinguish the following cases:

Case 1: ifa=bthenz<aandsozr€aoca=aohb.

Case 2: if b< a thenz < a=aVb If £ = a nothing is to be proved. If z < a
then b < z is not possible (otherwise @ = &V z = z) nor b > = (otherwise
a =bVz = b) and so b||z. Moreover, there is no element y € H such that
b<y<a,r<y (otherwise a = bV z < y < a). Therefore = € a o b using ().
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Case 3: if a < b one verifies similarly that z € a o b.

Case 4: if a||b then a < aV b,b < aV b. We first check that ¢ € a0 (a V b).
This is clear for z = a V b so in what follows we suppose = # a V b. Now
r<a=aVz<a<+=aVbhb<a<+= aVb= aand analogously
a < z = z = aV b, both contradictions so that z|le and z < a V b. As
above z € {aVblU{ue Hlu<aVbul|le, Aye H:a<y<aVbu<y}=

=ao(aVb).

Similarly, z € bo (aVb) and so z €ao(aVb)Nbe(aVb)=aotNbot.
Hence, using the condition (a), z € a o b and this completes our proof. ]
3. Remark.

1°. If (H,o) has an identity, then the corresponding lattice has this element
as zero. Indeed, Va e H:a€ aoes e < a.

2°. If it is considered in a join space only the first part of the condition (a)
(i.e. Ya,b€ H,3z € H,3t € H : {a,b} C z oz, U rox =tot),
{a,b}Czox
then in general an enlargement of the initial hypergroup is obtained (i.e.
aobg {z € HlaVz=5bVz=aVb} could hold).

§2. We shall consider now the case of hypergroups associated with (modular)
compactly generated lattices.
First, recall that in a lattice L an element c is called compact if for each

subset X C L, and ¢ < v r \/X there is a finite subset F' C X such

zeX
that c < V F. A completeE lattice is called compactly generated (algebraic) if
each element is a join of compact elements.
Now, we shall mention some properties which hold in a quasihypergroup
associated with a complete lattice. We shall use the notations:

forze L, I(z)={e€e L|z€zoeUeoz} and
for AC L, L(A) = | JL(2).

r€A

One can verify these properties, by the equivalence:
rel(y)=z<y.

4. Proposition. Let (L,V,A) be a complete lattice and (H, o) the associated
quasthypergroup. The following properties hold:

(1) Ve e L:z=\/L(a);
(2) ifz=VU thenVu e U,u € L(z);
(3) Ve € L, [,(z) =z o0z;
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(4) for each z,y € L we havezs <y zozx Cyoy S T €Yoy,

(5) foreach X CL, | L(\/F)CL(\/X)

FcXx,F finite
(6) I(z) = L{y) &z =y
(7Y Vu€ L if U = {z € Lz < u} then L(u) = L(U);
(8) I(X)=L(Y)=> X = VY, but the converse is false.

We shall establish necessary and sufficient conditions in a join space
< L,0 >, such that < L,o > can be associated with a (modular) compactly
generated lattice:

5. Theorem. Let < L,o > be a join space, which can be associated with a
modula lattice (L,V,A), that is (L,o) satisfies the conditions of Theorem 2.
The lattice (L,V,A) is a compactly generated one iff the join space < L,o >
satisfies the conditions of Theorem 2 and furthermore the following ones:

1°. VX CL X#0,3yel,daxeL:X Cyoyand [ yoy=axoax.

X Cyoy

2°. AT C L, T#0, such that VX C L the following assertion holds:
VteT,ift€axoay, then AF C X, F finite, such thatt € ap o aF.

3. VeeL, ASCTNzox, S#0, suchthat SCcoc= z € coc.

Proof. By Theorem 2, we can define on L the following order:
r<y&=reyoy

and we obtain a lattice modular (L, <), using the conditions of Theorem 2.
The condition 1° asserts that for any non-empty subset X of L, there is
sup X € L.
Indeed, if 1° is satisfied, then Vz € X, z € ax o ay, that means z < ay
and if b € X such that ¢ < b,Vz € X, then ax € axoay = [ | yoy C bob,
XCyo
since X C bob; so, ax <b. Therefore, Isup X and sup X = a}y. !
Conversely, if VX C L, X # 0, thereissup X = ax € L, then X C axoay
and for any b € L such that ¢ < b, Vz € X, we have ay < b, that means if
b€ L,such that X C bob, then ax € bob. Henceaxoax C (bob)o(bob) = bob,
by condition (2) of Theorem 2, whence ax o ax C m bobCaxoay, so
X Chob
ﬂ bob = ax oayx. The condition 2° says that every ¢t € T is a compact

X Cbob
element. Indeed, it results by the equivalences:

t€axoaxy «=t<ayxy <=t <supX.
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Finally, by the third condition it results that Vz € X, 35 C T, ¢ = ag, that
means z is a join of compact elements.

Therefore, the conditions 1°, 2° and 3° show that the lattice L is compactly
generated. u

In the following, we shall characterize the compactly generated lattices.
In order to do it, we shall study the subhypergroups of join spaces asso-
ciated with lattices and isomorphisms of such join spaces are established.

6. Proposition. Let L be a modular lattice. A subset I of L is an (invertible)
subhypergroup of < L,o > iff I is an ideal of L.

Proof. If I is a subhypergroup of < L,o >, for every {a,b) € I? we have
aVb € aob C I. Moreover, iffor a € I one takesz < a,z € Lthenz € aca C T
and so, I is an ideal of L.

Conversely, let I be an ideal of L. For (a,b) € I? if t € aob then
t <aVbandsot € I (I being ideal). For every (a,b) € I? there is an element
x=aVbe I such that a € boz. Hence I is a subhypergroup of < L,o > .

We finally remark that any multiplicatively closed part of < L,o > is a
subhypergroup, which is also invertible. ]

7. Proposition. If L is a modular lattice, then w p o> = L.

Proof. It is sufficient to verify that the only ultraclosed subhypergroup of
< L,o>is < L, o> itself.

Suppose that I is an ultraclosed subhypergroup of L. f I # L, take a ¢ I
and t € I. Then aVvt ¢ I andso aVt € (aol)N(ao (L~ I)). Hence
{aol)N(ao(L—1I))=0holds for every a € L only if I = L. n

Let us consider now a dual hyperoperation, i.e.

V(a,b)€ L?, axb={z € L|laAz=bAz=aAb}.

8. Proposition. For a lattice L let f : L — L be a bijective map. The
following conditions are equivalent:

(1) flaVvb)=f(a)Af(b), V(a,b) € L?,
(2) flaob) = f(a)x f(b), V(a,b) € L.

Proof. (1) = (2) Clearly f(aob)={f(z)|lz € L,aVa=2Vb=aVb} and
so f(z) € f(a)* f(b) by (1). Conversely, ift € f(a)x f(b), using the surjectivity
of f, there is an element z € L such that ¢t = f(z) and so f(zVa) = f(zVb) =
= f(a V b). again by (1). Hence, owing to the injectivity of f, 2 € a o b and
t € flaob).

(2) = (1) For every z € aob our hypothesis gives f(x) € f(a)* f(b) and
so f(z)A fla) = f(2)AF(b) = fa)A f(b) < f(z). Taking z = a Vb one obtains
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fla) A f(b) < f(a Vb). Conversely, observe that f(x) € f(a) * f(a) holds for
each ¢ € aoa (and each ¢ € L). Hence f(a) = f(x) A f(a) and f(a) < f(z).
Therefore, if < a, then f(a) < f(z), whence it results f(aVbd) < f(a)A f(b).

]

By a similar way as in the former Proposition, it is possible to provee the
following results:

(I) Let (L,V,A) bealatticeand f : L — L be a bijective map. The following
conditions are equivalent:

(1) fland)= f(a)V f(b), Y(a,b) € L?,
(2) flaxb) = f(a)o f(b), V(a,b) € L*.

(II) Let (L,V,A) and (L', v, A) be modular lattices, f : L — L’ be a function
and (L,o) resp. (L', o) the associated hypergroups. Then the following
conditions are equivalent:

(3) f is bijective and for any (z,y) € L*, f(zVy)= f(z)V f(y);
(4) f is a hypergroup isomorphism (i.e. f bijection and V(z,y) € L?,

fzoy) = f(z)o f(y):

(IIT) Let (L,V,A) and (L', V, A) be modular lattices, f : L — L' be a function
and (L, x*), resp. (L', *) the associated hypergroups. Then the following
conditions are equivalent:

(3') f is bijective and for any (z,y) € L?, f(zAy) = f(2)Af(y);
(4') f is a hypergroup isomorphism (i.e. f bijection and V (z,y) € L?,
flz xy) = f(z) * f(y)).

9. Example. In a Boole lattice L, if f : L — L is defined by f(a) = a
Va € L, then the conditions (1) and (1') are satisfied, so also (2) and (2') are
satisfied.

10. Remarks.
1. The lattice (L, V,A) is a modular one iff < L, * > is a join space. More-
over, if L is a modular lattice, then the following equivalences hold:

(L,*) is a regular hypergroup <= (L, x) is a regular reversible hyper-
group <= (L, %) is a canonical hypergroup <= L has a greatest element.

The proof of this result is similar to that one concerning the join space
< L,o > (see [1], [5] and [6]).

2. In a modular lattice (L, V, A), a subset [ is an (invertible) subhypergroup
of < L,x > iff I is a filter of L. Moreover, w¢r.» = L.
The proof is similar to the proof of Proposition 6.
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We mention that the above Proposition and the similar results can be
used in order to verify that some lattice provide, together with the above
hyperoperations, hypergroups.

Indeed, if such a bijection f : L — L exists, where L is a lattice, such
that for instance V(z,y) € L?, f(z Vy) = f(z) V f(y), then one can deduce
the associativity of "*” from the associativity of ”o” in the following way:

(Frxy) x 2= (f(@)x f(y)) * f(z) = f(zoy) x f(2) = f((woy)o2) =

= f(zo(yo2)) = f(a)* fly o 2) = £(e) * (Fly) * F(2)) = 23 % (g * 21).

For instance, for the non-distributive 5-element lattice My

one can use the bijective map f = .
Indeed, f(aVd) = f(1) =0=aA fla) A f(b), flaVv1) = f(1) =

=0=aA0= fla)Af(1), f(aV0) = fla) =a=aAl= f(a) A f(0) and

FOV1)=f(1)=0=1A0= £(0)A f(1).

0
1
a

-8 a
I o o
e )
(==

Moreover, in this case, we obtain that (Ms, o) and (Ms, *) are isomorphic.
Finally, we present the following characterization theorem for a modular
compactly generated lattice:

11. Theorem. A modular lattice (L,V,A) is compactly generated iff there
18 a join-semilattice with zero L' such that (L,0) is isomorphic to (S(L’),0)
and (L, %) is isomorphic with (S(L'), ), where S(L) denotes the set of all the
multiplicatively closed parts of (L', 0).

Proof. By (II) and (III) it results that [(L,o) ~ (S(L’),o) and (L,x) ~
~ (S(L'), *)] iff the lattices L and §(L’) are isomorphic.

On the other hand, by the proof of Proposition 6 it results that any
multiplicatively closed part of < L’,o > i1s a subhypergroup and a subset
of L' is a subhypergroup of < L', o > iff it is an ideal of the lattice (L', V, A).

Finally, to complete the proof of this Theorem, one uses Th.13, section 2,
Ch.II, [3], which says that a lattice is compactly generated iff it is isomorphic
to the lattice of all ideals of a join-sublattice (i.e. a partially ordered set, for
which sup{a, b} exists for any two elements a and b) with 0. =
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