An application of solving Diophantine quadratic equations

Grigore Călugăreanu

October 15, 2023

> Abstract
> We find the positive integer solutions for the equations $\frac{1}{x}+\frac{1}{y}=1$ and $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$.

The Diophantine quadratic equations below can be solved using suitable software (e.g. [1]). The ambitious reader will not use this and find an independent proof.

1 The equation $\frac{1}{x}+\frac{1}{y}=1$ for positive integers

The equation is equivalent to $x y=x+y$ which has only two solutions:
$(0,0),(2,2)$. Hence for positive integers we have only one solution

$$
\frac{1}{2}+\frac{1}{2}=1 .
$$

2 The equation $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$ for positive integers

For $n \geq 1$ we consider $\frac{1}{n}+\frac{1}{x}+\frac{1}{y}=1$, that is, $(n-1) x y-n x-n y=0$.
$n=1$: the equation becomes $x+y=0$ without positive integer solutions.
$n=2$: the equation $x y-2 x-2 y=0$ has six integer solutions:
$(0,0),(-2,1),(1,-2),(4,4),(3,6),(6,3)$. Hence for positive integers, we have only

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=1,
$$

and permutations.
$n=3$: the equation $2 x y-3 x-3 y=0$ has six solutions:
$(0,0),(-3,1),(1,-3),(3,3),(2,6),(6,2)$. Hence for positive integers, we have only

$$
\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{1}{3}+\frac{1}{2}+\frac{1}{6}=1
$$

and permutations (the second solution is already a permutation of the $n=2$ case).
$n=4$: the equation $3 x y-4 x-4 y=0$ has five solutions:
$(0,0),(-4,1),(1,-4),(2,4),(4,2)$. Hence for positive integers, we have only

$$
\frac{1}{4}+\frac{1}{2}+\frac{1}{4}=1
$$

already a permutation of the $n=2$ case.
$n=5$: the equation $4 x y-5 x-5 y=0$ has three solutions:
$(0,0),(-5,1),(1,-5)$. Hence for positive integers, we have no solutions.
$n=6$: the equation $5 x y-6 x-6 y=0$ has five solutions:
$(0,0),(-6,1),(1,-6),(2,3),(2,2)$. Hence for positive integers, we have only

$$
\frac{1}{6}+\frac{1}{2}+\frac{1}{3}=1
$$

already a permutation of the $n=2$ case.
For $n>6$ the equation $(n-1) x y-n x-n y=0$ has (only) three solutions: $(0,0),(-n, 1),(1,-n)$.
Indeed, if $x \neq 1 \neq y$, we can prove that $(n-1) x y>n(x+y)$. Hence for positive integers, we have no solutions.

Summarizing, up to permutations, the equation has only three solutions:

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1 .
$$

Who wants to continue with $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{w}=1 ?$

References

[1] Matthews http://www.numbertheory.org/php/generalquadratic.php

