EVERY ABELIAN GROUP IS DETERMINED
BY A SUBGROUP LATTICE

SIMION BREAZ and GRIGORE CĂLUGĂREANU

“Babes-Bolyai” University, Faculty of Mathematics and Computer Science
str. M. Kogălniceanu 1, 40084 Cluj-Napoca, Romania
e-mail: bodo@math.ubbcluj.ro, calu@math.ubbcluj.ro

Communicated by L. Márki
(Received December 7, 2005; accepted February 1, 2006)

Abstract

We prove that every Abelian group G is determined up to an isomorphism by the
subgroup lattice of the group $\mathbb{Z} \times G$ and some other similar results.

It is well known that the lattice $L(G)$ of all subgroups of a group G
does not determine the group, that is, there exist non-isomorphic groups
with isomorphic subgroup lattices. However, sometimes, specific subgroup
lattices may determine some groups. For example, it was proved in [2] that
every Abelian group which has the square root property is determined by
the subgroup lattice of its square. This result generalizes an earlier result of
Lukács and Pálfy [4]. The main result of this note is the following theorem
which actually can be proved in a more general setting (see Lemma 2).

Theorem 1. Let A be an Abelian group and G a group. The following
statements are true.

(i) If $\mathbb{Z} \times A$ and $\mathbb{Z} \times G$ have isomorphic subgroup lattices then $A \cong G$.
(ii) If $\mathbb{Q} \times A$ and $\mathbb{Q} \times G$ have isomorphic subgroup lattices then $A \cong G$.
(iii) If A is an Abelian p-group and G is a p-group such that $\mathbb{Z}(p^{\infty}) \times A$
and $\mathbb{Z}(p^{\infty}) \times G$ have isomorphic subgroup lattices then $A \cong G$.

2000 Mathematics Subject Classification. Primary 20E15, 20K27.
Key words and phrases. Abelian group, subgroup lattice.
Lemma 1. Let K and G be groups such that for every $g \in G$ there exists $k \in K$ such that $\text{ord}(g)$ divides $\text{ord}(k)$ (here every non-zero positive integer is considered to be a divisor of ∞).

a) If $L(K \times G)$ is modular then every subgroup of G is normal.

b) If for an Abelian group A, $L(K \times G)$ is isomorphic to $L(A)$, then G is an Abelian group.

Proof. a) Let H be a subgroup of G, $g \in G$ and $H^g = g^{-1}Hg$. There exists $k \in K$ such that $\text{ord}(g)$ divides $\text{ord}(k)$. Consider the following subgroups of $K \times G$: $X = 0 \times \langle H, H^g \rangle$, $Y = \langle (k, g) \rangle$ and $Z = 0 \times H$. Then $Z \subseteq X$, and so $X \cap (Y \vee Z) = (X \cap Y) \vee Z = \{(0, e)\} \vee Z = Z$ (here e denotes the identity of G). Moreover, for every $h \in H$ we have

$$(0, g^{-1}hg) = (k^{-1}, g^{-1})(0, h)(k, g) \in Y \vee Z,$$

and $X \subseteq Y \vee Z$ follows. Therefore, $X = Z$ and this implies that every subgroup of G is normal.

b) Since $L(A)$ is modular then $L(K \times G)$ is also modular, and, by a), every subgroup of G is normal. Using [5, Exercise 1, p. 68], two possibilities do exist: G is Abelian or G is isomorphic to a direct product of the quaternion group H_8 and an Abelian group, say B. In the second case we first observe that $K \times G$ contains a “top” interval isomorphic with H_8 (namely $K \times G / K \times B$). Further, notice that the subgroup lattice of H_8 is of the following form

that is, has a smallest nontrivial subgroup. Thus, the subgroup lattice of the Abelian group A contains a “top” interval which is not a chain, but has a smallest element, i.e., A has a quotient group with such a subgroup lattice. According to [3, Theorem 3.1], such a group is cocyclic and so, has a chain as subgroup lattice, a contradiction. Therefore G must be Abelian. \qed

Lemma 2. Let A be an Abelian group. If G is a group and B is a non-torsion Abelian group such that $L(B \times A) \cong L(B \times G)$ then $B \times A \cong B \times G$. Moreover, if B has the cancellation property then $A \cong G$.

EVERY ABELIAN GROUP IS DETERMINED BY A SUBGROUP LATTICE

Proof. Since $B \times A$ is Abelian, by the previous Lemma, G is also Abelian. Using results given in [5, Theorem 2.6.10] (actually due to Baer), if A is not a torsion group, or [5, Theorem 2.6.15], if A is a torsion group, we obtain $B \times A \cong B \times G$. □

For the sake of completeness, in order to justify some ingredients below, we recall that divisible Abelian groups of finite rank have semilocal endomorphism rings; as such, these rings have 1 in the stable range and so these groups share the cancellation property. In particular, $\mathbb{Z}(p^\infty)$ and \mathbb{Q} cancel from direct sums. \mathbb{Z} too has the cancellation property (see [1, Corollary 8.8]).

Proof of Theorem 1. Since \mathbb{Z} and \mathbb{Q} have the cancellation property, for (i) and (ii) it suffices to apply Lemma 2.

For (iii) we observe that $\mathbb{Z}(p^\infty)$ and A satisfy the hypothesis of Lemma 1, hence G must be Abelian. Finally we apply [5, Theorem 2.6.8] since $\mathbb{Z}(p^\infty)$ has the cancellation property. □

Corollary 1. Let C be the class of all non-reduced Abelian groups whose divisible part is not torsion. In the class C, groups are determined by their subgroup lattice.

Proof. Let $A, A' \in C$. Since these groups are not reduced, their divisible parts are not zero. These divisible parts being not torsion, by the structure theorem of Abelian divisible groups, each A and A' has a direct summand isomorphic with \mathbb{Q}: $A \cong \mathbb{Q} \oplus B$, $A' \cong \mathbb{Q} \oplus B'$. Hence we can apply Lemma 2 and $A \cong A'$. □

As a by-product, the proof of the theorem also gives:

Corollary 2. For an arbitrary group G, the subgroup lattice $L(\mathbb{Z} \times G)$ is modular if and only if G is Abelian.

REFERENCES

