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ABSTRACT
Column-row products have zero determinant over any commutative ring. In this paper we discuss the converse. For domains,

we show that this yields a characterization of pre-Schreier rings, and for rings with zero divisors we show that reduced

pre-Schreier rings have this property.

Finally, for the rings of integers modulo n, we determine the 2 × 2 matrices which are (or not) full and their numbers.
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1. INTRODUCTION
The inner rank of an m × n matrix over a ring is de�ned as the least integer r such that A can be

expressed as a product of an m × r matrix and an r × n matrix. For example, over a division ring this

notion coincides with the usual notion of rank. A square matrix is called full if its inner rank equals

its order, and non-full otherwise.

It is easy to see that, over any commutative ring and for any positive integer n, the determinant

of a n-column-n-row product is zero. Obviously, such products have inner rank 1.

In this paper, we discuss the converse, that is, we �nd conditions on a commutative ring, such

that every zero determinant (square) matrix is a column-row product, that is, has inner rank 1.

It is also easy to see that this property fails for n ≥ 3. Indeed, if one row has zero and nonzero

entries, and in the column of one zero we have one nonzero entry, the matrix is not a column-row

product. As an example, for any n ≥ 3, the diagonal matrix diag(1, 1, 0,… , 0) is a zero determinant

matrix in Mn(R), which has no column-row decompositions, over any commutative, unital ring R.

This explains why, we mostly refer to 2 × 2 matrices. For these, full matrices have inner rank two

(that is, these do not have column-row decompositions) and non-full (nonzero) matrices have inner

rank 1 (that is, these have column-row decompositions).
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Over integral domains, this condition turns out to be a (new) characterization of pre-Schreier

domains.

A commutative ring R is called pre-Schreier, if every nonzero element r ∈ R is primal, i.e., if r
divides xy , there are r1, r2 elements in R such that r = r1r2, r1 divides x and r2 divides y .

Pre-Schreier domains were introduced by M. Zafrullah in [5]. A pre-Schreier integrally closed

domain was called a Schreier domain by P. M. Cohn in [2]. Every GCD (greatest common divisor)

domain is Schreier. In general, an irreducible element is primal if and only if it is a prime element.

Consequently, in a pre-Schreier domain, every irreducible is prime.

The characterization is the following

THEOREM . Let R be a commutative unital ring. Consider the following conditions:

(i) every 2 × 2 zero determinant matrix over R is non-full;

(ii) R is pre-Schreier.

Then (i) implies (ii) and, if R is a domain, (ii) implies (i).

An example shows that the pre-Schreier condition is necessary in order to have such column-row

decompositions.

For rings with zero divisors, we show that the property holds for reduced rings (i.e. without

nonzero nilpotent elements), that is, we prove the following

THEOREM . All the zero determinant 2 × 2 matrices over any pre-Schreier reduced ring are non-full.

As already mentioned, over commutative rings every non-full matrix has zero determinant.
In the last section, we determine the full 2 × 2 matrices and their numbers over the rings ℤn

(integers modulo n), for positive integers n ≥ 2.

A problem apparently connected, is how to �t into our study the 2 × 2 matrices which have

dependent rows (or columns).

Clearly, every non-full matrix has dependent rows. However the converse fails in general. As a

special case of a result in the last section, 2I2 is full over ℤ4, but has dependent rows: 2 row1(2I2) =
2 row2(2I2) = 0.

On the other hand, rows may be dependent for a nonzero determinant matrix: over ℤ6,

det([
2 1
1 2]) = 3 ≠ 0,

but 2 [2 1] + 2 [1 2] = [0 0].

For a unital ring R, U (R) denotes the set of all the units of R and GLn(R) = U (Mn(R)). For a �nite

set X , |X | denotes the number of elements of X , and, for a positive integer k, [ k2 ] denotes the integer

part of
k
2 (also called its “�oor”).

2. PROOF OF THE THEOREMS AND CONSEQUENCES
As already mentioned, we show that, the coincidence of zero determinant matrices and non-full

matrices over (commutative) rings, characterizes pre-Schreier domains.

THEOREM 1. Let R be a commutative unital ring. Consider the following conditions:

(i) every zero determinant 2 × 2 matrix over R is non-full;

(ii) R is pre-Schreier.

Then (i) implies (ii) and, if R is a domain, (ii) implies (i).

Proof. Suppose 0 ≠ r ∈ R divides xy. Then xy = rt for some t ∈ R and since [
x t
r y] has zero

determinant, it has a column-row decomposition, [
s
u] [a b]. Then r = au, x = sa and y = ub, so a

divides x and u divides y . Hence r is primal, as desired.
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As for the converse, let R be a pre-Schreier domain and let A = [
x y
z t ] with xt = yz. First

suppose, both x and z are nonzero. Since x divides yz there exist x1, x2, y1, z1 such that x = x1x2,

y = x1y1 and z = x2z1. By cancellation, xt = yz yields t = y1z1 and so A = [
x1
z1] [

x2 y1].

Secondly, suppose x ≠ 0 = z. Then, since det(A) = 0, we get t = 0 and A = [
x y
0 0] = [

1
0] [x y].

In the remaining case, A = [
0 y
0 t ] = [

y
t ] [0 1]. □

REMARK . A similar weaker result, for integral domains and 2 × 2 matrices whose rank is 1 over the

�eld of fractions, appears in [4].

EXAMPLE . It is well-known that ℤ[i
√
5] = {m + ni

√
5∶ m, n ∈ ℤ} is (a domain which is) not UFD.

Since 3 is irreducible but not a prime, ℤ[i
√
5] is also not (pre-)Schreier. It can be checked that over

ℤ[i
√
5], the 2 × 2 zero determinant matrix A = [

3 1 − i
√
5

1 + i
√
5 2 ] is full.

In rings with zero divisors we can prove the following

THEOREM 2. All the zero determinant matrices over any pre-Schreier reduced ring are non-full.

Proof. We use Andrunakievici-Ryabukhin theorem: a nonzero ring R is reduced if and only if R
is a subdirect product of domains (see [1]). Recall that a ring R is said to be (represented as) a

subdirect product of a family of rings {Ri ∶ i ∈ I } if there is a monomorphism (i.e., injective ring

homomorphism) f ∶ R → ∏ Ri , and fi ∶= �i ◦ f ∶ R → Ri are surjective for each i ∈ I , where

�i ∶ ∏ Ri → Ri is the canonical projection map.

Notice that for a monomorphism f ∶ R → ∏ Ri of commutative rings as above, and a square

matrix M over R, f (det(M)) = det(f (M)). Here if M = [mjk] ∈ Mn(R) then f (M) denotes [f (mjk )] ∈
Mn(∏ Ri) ≅ ∏Mn(Ri) and det(f (M)) = (det(fi(M))) ∈ ∏ Ri .

In particular det(M) = 0 if and only if det((�i ◦ f )(M)) = 0 for all i ∈ I .
Analogously, M is non-full over R if and only if (�i ◦ f )(M) are non-full over Ri , for all i ∈ I . □

In particular,

COROLLARY 3. All the zero determinant matrices over any product of �elds are non-full.

COROLLARY 4. Let n be a square-free positive integer. Then all the zero determinant matrices over

ℤn are non-full.

3. NON-FULL MATRICES OVER INTEGERS MODN
We �rst mention some useful auxiliary results.

Let A, B ∈ Mn(R). Then B is equivalent to A if there are units P, Q ∈ GLn(R) such that B = PAQ.

Notice that, over any commutative ring R, if B is equivalent to A then rB is equivalent to rA, for

any r ∈ R. It is easy to see that both the zero determinant and the non-full conditions are invariant
to equivalences.

As a special case, if u ∈ U (R), we can take P or Q as uI2, so we can multiply matrices by units,

without changing the properties just mentioned.

Denote by gcd(A) the greatest common divisor of the entries of the matrix A, if the GCD of the

entries exists. When discussing these properties, if gcd(A) = u ∈ U (R), we can suppose gcd(A) = 1,

just multiplying the matrix by u−1.

REMARK . If A is non-full, so is any multiple rA for any r ∈ R. The converse fails: it is easy to check

that [
1 0
0 2] does not have zero determinant over any (commutative) ring, unless 2 = 0, but over ℤ4,

2 [
1 0
0 2] = [

2 0
0 0] = [

1
0] [2 0].
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PROPOSITION 5. Both the set of all zero determinant matrices and the set of all non-full matrices are

closed under: multiplication, transpose, interchange of rows (or columns) and elementary row (or

column) transformations, provided that multiplications of rows (or columns) by “scalars” are made

only with units.

Proof. All properties are well-known for zero determinant matrices and are easy to check for non-full

matrices. Right multiplication by [
0 1
1 0] interchanges the columns, left multiplication, interchanges

rows. □

The following simple result will be useful in the sequel.

PROPOSITION 6. If a zero determinant matrix over any commutative ring R has a unit entry, it is

non-full.

Proof. Interchanging rows and/or columns it su�ces to check the NW corner unit entry case, that

is, for any matrix A = [
a b
c d], suppose a is a unit. Then A = [

1
a−1c] [a b], since ad = bc. □

EXAMPLE . Take A = [
6 3
10 0] over ℤ30 (zero determinant with no unit entry). It is easy to check that

A has no decomposition of types [
a b
c 0] = [

a
c] [x y], nor [

x
y] [a b]. However, A is non-full:

[
6 3
10 0] = [

21
10] [16 3] = [

9
10] [4 27]. Notice that the �rst decomposition is of type [

x
c] [y b].

Such decompositions can be successfully used, when �nding column-row decompositions, for zero

determinant matrices over ℤn , with square-free n.

Suppose n = pr11 … prkk with r1,… , rl ≥ 2 and rl+1,… , rk = 1. Then ℤn ≅ ℤpr11
× … × ℤprll

× ℤpl+1 ×
… ×ℤpk is a �nite direct product of local rings (i.e. a semilocal ring), and �elds. Moreover, all primes

pi are di�erent. Using Theorem 2, in the �nite direct product case, and Corollary 4, it follows that

the determination of the zero determinant matrices which are (or not) full reduces to the case when

n is the power (≥ 2) of a prime number.

Recall that if n = pr11 … prkk , then a is nilpotent in ℤn if and only if a is divisible by p1… pk . Since

the rings ℤn are �nite unital rings, a nonzero element is a unit if and only if it is not a zero divisor.

We mention that, since in the sequel we discuss ℤpk , which is not a domain, elements a, b are

called associates if b = au with some unit u (and not the usual a divides b and b divides a). This way,

up to associates, the nonzero nilpotents of ℤpk are pm with 1 ≤ m ≤ k − 1.

LEMMA 7. Suppose n = pk , k > 1. The matrices [
pm 0
0 pl] with 1 ≤ m, l ≤ k − 1 are full over ℤn . In

particular, so are the matrices pmI2.

Proof. By contradiction, suppose such a matrix is non-full, that is [
pm 0
0 pl] = [

a
b] [x y] with

1 ≤ m, l ≤ k − 1. Equivalently, the system

ax = pm , ay = 0, bx = 0, by = pl

is solvable over ℤpk . None of a, b, x, y is a unit (for instance, a ∈ U (ℤpk ) implies y = 0 which

contradicts by = pl ). Hence all a, b, x, y are associates of nilpotents (since ℤpk is local) and since we

can neglect units (by Proposition 5), denote a = pi , b = pj , x = pr , y = pt . Then ax = pi ⋅ pr implies

i + r = m, ay = pi ⋅ pt imples i + t ≥ k, bx = pj ⋅ pr implies j + r ≥ k and by = pj ⋅ pt implies j + t = l .
From the �rst and last we have i + j + r + t = l +m. From the middle two we have i + j + r + t ≥ 2k
and this yields l +m ≥ 2k (both m, l ≤ k − 1). □
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Since we merely discuss zero determinant matrices that are full, notice, by denial of Proposition

5, that if a zero determinant matrix is full, the matrices obtained from it, by interchanging rows

(or columns), are also (zero determinant matrices that are) full. What changes is the sign of their

determinants.

We also mention that if a matrix A ∈ M2(ℤpk ) is a multiple of p, namely A = pA1, then the

entries of A1 belong to ℤpk−1 ; if it is a multiple of p2, say A = p2A2, the entries of A2 belong to ℤpk−2 ,

and so on. Finally, if A = pk−1Ak−1, the entries of Ak−1 belong to ℤp . To simplify the wording, if

A = plAl we will say that Al ∈ M2(ℤpk−l ) for any 1 ≤ l ≤ k − 1.

THEOREM 8. Let A ∈ M2(ℤpk ) be a nonzero zero determinant matrix. Then A is full if and only if

gcd(A) is a nonzero nilpotent of ℤpk and, if A = gcd(A)A1, det(A1) ≠ 0.

Proof. According to Proposition 6, since ℤpk is local, only zero determinant matrices with (possibly

zero) nilpotent entries may be full. Since not all entries are zero and the nonzero nilpotents are

associated with pm with 1 ≤ m ≤ k − 1, gcd(A) is a nonzero nilpotent of ℤpk .

Since A is nonzero, so is A1. Moreover, from gcd(A1) = 1, it follows that A1 must have at least a
unit entry. Notice that if det(A1) = 0 , by Proposition 6, A1 is non-full and so is A. Hence det(A1) ≠ 0.

Conversely, let pm = gcd(A). Then A = pmA1 with gcd(A1) = 1, det(A1) ≠ 0 and (as noted in the

paragraph before the theorem) we can suppose A1 ∈ M2(ℤpk−m ). Again since ℤpk is local, det(A1)
is a unit or else a nilpotent.

In the �rst case, det(A1) is a unit, and showing that A is full, reduces to show that pmI2 is full,

which follows from the previous lemma.

In the remaining case, det(A1) is nonzero nilpotent.

As already noted,A1 must have at least a unit entry which (we use Proposition 5), by interchanging

rows and/or columns, we may suppose in the NW corner. Moreover, multiplying the �rst row by

the inverse of the NW entry, we may suppose that the NW entry is 1. Further, we transform this

matrix (as for the echelon form) into an equivalent diagonal matrix A2 = [
1 0
0 �] with a nonzero

nilpotent � . Clearly, det(A1) = det(A2) = � ∈ N (ℤpk−m ).
Notice that, since det(A) = p2m det(A1) = p2m� = 0, � is divisible by pk−2m , pm� is divisible

by pk−m and so pm� is associated to a nonzero power of p, say pl . But then A is equivalent to

pmA2 = [
pm 0
0 pl], which is full, again from the previous lemma. □

COROLLARY 9. Zero determinant matrices with only diagonal (or secondary diagonal) nonzero entries

over ℤpk are full.

REMARKS . 1. A careful observation of the proof of the previous theorem shows that the statement

remains true over any local commutative ring such that the ideal of nilpotent elements is principal.
2. Since ℤn is reduced if and only if n is square-free, the previous theorem also shows that,

for rings of integers modulo n, the converse of Corollary 4 holds. We were not able to prove or
disprove the following statement: a pre-Schreier ring, all whose 2 × 2 zero determinant matrices are
non-full, is reduced.

Notice that if A = pmA1 then det(A) = p2m det(A1) = 0 for any zero determinant matrix. Hence,

det(A1), and so A1, can be units if and only if 2m ≥ k (i.e. m ≥ k
2 ).

Moreover, if m = 1, det(A1) must be (associated to) pk−2, if m = 2, det(A1) must be (associated to)

pk−3 or pk−4, and so on.

Therefore we can list the full zero determinant matrices over ℤpk as follows

THEOREM10. Let p be a prime number. The only nonzero full zero determinant matricesA ofM2(ℤpk ),
are the matrices of form pmA1 with 1 ≤ m ≤ k − 1 and gcd(A1) = 1, where:

(1) for m = k − 1, A1 is a unit of M2(ℤp);
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(2) for m = k − 2, A1 belongs to M2(ℤp2 ) and has determinant associated to any nonzero

nilpotent of ℤp2 or else, is a unit in M2(ℤp2 );
(3) for m = k − 3, A1 belongs to M2(ℤp3 ) and has determinant associated to any nonzero

nilpotent of ℤp3 or else, is a unit in M2(ℤp3 );
⋮

([ k2 ]) for m = k − [ k2 ], A1 belongs to M2 (
ℤ
p[

k
2 ])

and has determinant associated to any

nonzero nilpotent of ℤ
p[

k
2 ]

or else, is a unit in M2(ℤ
p[

k
2 ]
);

([ k2 ] + 1) for m = k − [ k2 ] − 1, A1 belongs to M2 (
ℤ
p[

k
2 ])

and has determinant associated to any

nonzero nilpotent of ℤ
p[

k
2 ]

(no more units);

⋮
(k − 2) for m = 2, A1 belongs to M2(ℤpk−2 ) and has (nilpotent) determinant associated to pk−3

or pk−4.

(k − 1) form = 1,A1 belongs to M2(ℤpk−1 ) and has (nilpotent) determinant associated to pk−2. □

As in [3], we shall use the following notations: Dn(m, k) = {A ∈ Mn(ℤm)∶ detA ≡ k (mod m)}
and dn(m, k) = |Dn(m, k)|.

Recall from [3] that (for n = 2) the number of 2 × 2 matrices over ℤpr of determinant pl (r > l) is

d2(pr ; pl ) = p3r + p3r−1 − p3r−l−1 − p3r−l−2, with
||GL2(ℤp)|| = d2(p; p

0) = (p2 − 1)(p2 − p). In particular,

d2(pr ; pr−1) = p3r + p3r−1 − p2r − p2r−1.

Moreover, also from [3], d2(pk ; 0) = p2k−1(pk+1 + pk − 1) is the number of zero determinant

matrices over ℤpk .

COROLLARY 11. The number of full zero determinant matrices over ℤpk is

||GL2(ℤp)|| + (p − 1)[d2(p2; p) + d2(p3; p2) + … + d2(pk−1; pk−2)].

Proof. We just count the matrices listed in the previous theorem. Here p − 1 is the number of

associates for any nilpotent.

(1)
|||GL2 (ℤp)

|||;

(2) (p − 1)d2 (p2; p) +
||||
GL2 (ℤp2)

||||
(3) (p − 1)d2 (p3; p2) −

||||
GL2 (ℤp2)

||||
+
||||
GL2 (ℤp3)

||||
(4) (p − 1)d2 (p4; p3) −

||||
GL2 (ℤp3)

||||
+
||||
GL2 (ℤp4)

||||
⋮

([ k2 ]) (p − 1)d2 (p
[
k
2 ]; p[

k
2 ]−1

) −
||||||
GL2 (

ℤ
p[

k
2 ]−1)

||||||
+
||||||
GL2 (

ℤ
p[

k
2 ])

||||||

([ k2 ] + 1) (p − 1)d2 (p
[
k
2 ]+1; p[

k
2 ]
) −

||||||
GL2 (

ℤ
p[

k
2 ])

||||||

([ k2 ] + 2) (p − 1)d2 (p
[
k
2 ]+2; p[

k
2 ]+1

)
⋮

(k − 1) (p − 1)d2(pk−1; pk−2). □
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COROLLARY 12. The number of full zero determinant matrices over ℤpk is

1
p3 − 1 (p

3k+1 − p3k−1 − p2k+2 + p2k+1 + p2 − p) .

Proof. Repeatedly using d2(pr ; pr−1) = p3r + p3r−1 − p2r − p2r−1, the sum S in the previous corollary

is (p2 − 1)(p2 − p) + (p − 1)� where � =
k−1
∑
i=2

(p3i + p3i−1 − p2i − p2i−1). Separatedly adding these four

geometric progressions gives

� =
p3k + p3k−1 − p6 − p5

p3 − 1
−
p2k + p2k−1 − p4 − p3

p2 − 1
.

Then

S =
1

p3 − 1[
(p2 − 1)(p2 − p)(p3 − 1) + (p3k + p3k−1 − p6 − p5)(p − 1) − (p2k−1 − p3)(p3 − 1)]

which �nally yields

S =
1

p3 − 1 (p
3k+1 − p3k−1 − p2k+2 + p2k+1 + p2 − p) . □

REMARK . In order to count the number of non-full matrices over ℤpk , it su�ces to subtract from

the total number of zero determinant matrices, that is d2(pk ; 0) = p2k−1(pk+1 + pk − 1), the number

in the previous corollary and add 1 (the zero matrix). This number is

1
p3 − 1

(p + 1)(p2 − 1)(p3k − 1) + 1.

Denote by O2(ℤn) the set of all the zero determinant matrices over ℤn , by D2(ℤn) the set of all

the non-full matrices over ℤn and by ℕD2(ℤn) = O2(ℤn) ⧵D2(ℤn).
Moreover, we introduce the following numerical functions: f , g ∶ ℤ∗

+ → ℤ∗
+ de�ned by f (n) =

|O2(ℤn)| and g(n) = |D2(ℤn)|. Observe that, according to Corollary 4, for any square-free positive

integer n, f (n) = g(n) and for any positive integer n, f (n) ≥ g(n). Obviously, |ℕD2(ℤn)| = f (n) − g(n).
First an easy result

LEMMA 13. (i) If n,m are coprime positive integers, then |O2(ℤnm)| = |O2(ℤn)| ⋅ |O2(ℤm)|, i.e. f (nm) =
f (n)f (m) and |D2(ℤnm)| = |D2(ℤn)| ⋅ |D2(ℤm)|, i.e. g(nm) = g(n)g(m).

(ii) Let n = pr11 … prll pl+1… pm with r1,… , rl ≥ 2 and di�erent primes pi (1 ≤ i ≤ m). Then

g(n) = g(pr11 ) … g(prll )f (pl+1) … f (pm) gives the number of non-full matrices over ℤn .

Proof. (i) If n,m are coprime, ℤnm ≅ ℤn × ℤm , the direct product. Moreover, M2(ℤnm) ≅ M2(ℤn) ×
M2(ℤm) and it is readily seen that this isomorphism preserves zero determinant matrices and

non-full matrices, respectively.

(ii) Just use the fact that f , g are multiplicative (i.e. (i)). Then

|D2(ℤn)| = g(n) = g(pr11 ) … g(prll )g(pl+1) … g(pm) = g(pr11 ) … g(prll )f (pl+1) … f (pm). □

Since the zero determinant matrices coincide with the non-full matrices over ℤq for any square-

free q, it was easy to foresee the following

PROPOSITION 14. Let n = pkq with square-free q. Then

|||O2(ℤpkq)
|||

|||ℕD2(ℤpkq)
|||
=

|||O2(ℤpk )
|||

|||ℕD2(ℤpk )
|||
,

that is,

f (pkq)
f (pkq) − g(pkq)

=
f (pk )

f (pk ) − g(pk )
.
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Proof. By Lemma 13,
|||O2(ℤpkq)

||| =
|||O2(ℤpk )

||| ⋅
||O2(ℤq)||, that is f (pkq) = f (pk )f (q), so the equality in

the statement reduces to f (pkq) − g(pkq) = f (q)(f (pk ) − g(pk )). Equivalently, g(pkq) = g(pk )f (q) =
g(pk )g(q), which holds by the previous lemma. □

REMARK . Observe that, by [3],
|||O2(ℤpk )

||| = p2k−1(pk+1 + pk − 1) and
|||ℕD2(ℤpk )

||| is the number

determined in Corollary 12.
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