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FULLY INVARIANT ELEMENTS IN LATTICES

GRIGORE CALUGAREANU

Abstract. For a fully invariant subgroup A of an abelian group G = H ¢ K
the equality A= (AN H) ® (AN K) holds. This leads to a weaker definition of
fully invariant elements in lattices. Among other things, it is proved that, even
in decent conditions, the socle of a lattice and the terms of the so-called Loewy
series are (in this sense) fully invariant.

1. PRELIMINARY DEFINITIONS AND RESULTS

In this paper, L will be a complete lattice, 0 and 1 denoting as usually
the smallest and the largest elements. L is called upper continuous if a A
(VD)= \/ (a A d) holds for every a € L and every upper directed subset (or,

deD
equivalently, for every chain) D C L. An element a is called atom if it covers
the smallest element. A lattice is called atomic if each quotient sublattice a/0
(our notations follow [2]) contains an atom for each a > 0 respectively atom
generated if each element is a join of atoms. If a € L, an element o’ € L is
called a complement of a if a Aa’ = 0 and aV a’ = 1. In this situation we
shall also use the notation a @ @’ = 1 and will call this a direct sum. A join
(also called sum) \/ b; is called direct if b; A ( v b;) = 0, holds for each
i€l i€l j#i

j € I. The lattice L is called complemented if each element in L has at least
one complement.

Following [1], a lattice L satisfies the condition (B) if for any chain {b;};;

and for any a € L such that aAb; = 0, Vi € I, the following holds a A (v b;) =
i€l

0. It is called inductive if all its quotient sublattices (intervals) satisfy the

condition (B). Obviously, intervals of inductive lattices are inductive and each

upper continuous lattice is inductive. Moreover, lattices of finite length are

inductive.

An element c is called a pseudocomplement of b in L if bAc = 0 and ¢
is maximal with this property. The lattice L is called pseudocomplemented
if every element in L has at least one pseudocomplement. Every inductive
lattice is pseudocomplemented.

For the sake of completeness recall the following known results.
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THEOREM 1.1. A lattice L is modular if and only if a < c and aAb=cAb,
aVb=cVb= a=c for every a,b,c € L.

LeMMA 1.1. ([5]) In a modular lattice with zero, p = (pV a) A (p V b),
pAa=pAb=0implypA(aVd)=0.

LEMMA 1.2. ([1]) In a modular lattice L if a < b and a is a direct summand
in L then a is also a direct summand in b/0.

2. WEAKLY FULLY INVARIANT ELEMENTS

DEFINITION. We call a € L a weakly fully invariant element if for each

direct decomposition 1 = @ b; one has a = @(a Ab;).
iel i€l
Clearly, a > \/(a/\bi) holds for arbitrary elements a, {b;};c; in every lattice.
i€l

PROPERTIES. 1) The weakly fully invariant property is transitive.

Indeed, let a be weakly fully invariant in b/0 (a < b) and b be weakly fully
invariant in L. Then a is weakly fully invariant in L because

1=Pbi=b=EDbAb)cb/0=>a=(aAbAb)) =Panb).

il i€l i€l el

2) A weakly fully invariant element contained in a direct summand is weakly
fully invariant in it.

Indeed, let a be a weakly fully invariant element in L and for a < b, let
bdc=1.Thenif b= @q we derive

: el
1= (@q) dc=>a= (a/\c)@(@(a/\ci)) = ED(a/\ci).
il il il

3) In a distributive lattice, the weakly fully invariant elements form an upper
semilattice.

Indeed, if a,c are weakly fully invariant in L then for each direct decom-

position 1 = @bi we have a = @(a Ab;) and ¢ = @(c A b;). Hence

i€l iel iel
aVe=(Pant))v (@crb) =\ (anb)V(crb)) = \/((ave)ab) =
iel i€l iel iel
@((a V ¢) A b;), using the distributivity.
el :

DEFINITION. ‘A complete lattice L is called meet infinitely distributive if
a A (v by) = V(a A b;) holds for arbitrary elements a, {b;}icr in L.
i€l i€l
4) In a meet infinitely distributive lattice the weakly fully invariant elements
form a sublattice.

Indeed, with the above notations a A ¢ = (@(a Ab)) A (@(c Abj)) =
iel jel
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V@ @nrb) Aenb)=\/(arenb)=EP((arc)rby).

i€l jel el i€l

PROPOSITION 2.1. In a bounded, modular lattice the join of two weakly fully
invariant direct summands is also a direct summand.

Proof. Let a,b be weakly fully invariant direct summands in L. Then 1 =
a®a =badb for suitable elements b,b’ e Landb=bA1=bA(a®d) =
(a Ab) ® (a’ Ab) and symmetrically a = (a Ab) ® (a A D).

Now aVb=(aAb)V (aAb)V (a’ Ab) and we verify that this sum is direct.

(a) (@ AY)A((aAD)® (a/ Ab)) <V AD=0;

(b) (&' AB)A((aAb)B (aAb)) <a' Aa=0;

(c) (aAb)A((a’ Ab) D (aAb)) = 0 follows using the Lemma 1.1; indeed,
((and)® (@A) A{(aAb) @ (a’Ab)=(aAN(bDY))A((a®d)Ab)=aAb
and (a Ab)A(dAb)<aAnd =0,(aAb)A(aAb)<bAY =0.

Hence aVb = (aAb)® (aAb)® (o' Ab) = a®(a’ Ab) . But a’ Abis a direct
summand in b/0 and so also in L (b being a direct summand in L). Hence by
Lemma 1.2, a’ A b is also a direct summand in o’ so that aVb=a® (' A D) is
a direct summand in L. a

PROPOSITION 2.2. If the weakly fully invariant elements form a sublattice
of L then the set F'S of all the weakly fully invariant direct summands forms
a distributive sublattice of L.

Proof. Let a,b,c be weakly fully invariant direct summands in L. Only
the distributivity requires a proof. If we take ¢ = (a V b) A¢, a Vb being
a direct summand in L (see the previous Proposition) and ¢ being weakly
fully invariant in L, ¢’ is also weakly fully invariant in a V b. Hence ¢ =
(and)® (@ AbAC) < (aAc)V (bAc) (using ¢ < ¢, the modularity and the
equality a Vb = a @ (a’ V b) obtained in the previous Proposition). O

We can partly recover a result from [4].

THEOREM 2.1. In a complete lattice L let a be a direct summand and {c;};;
all the elements of L such that a® ¢; = 1. Then /\ ¢; contains all the weakly
el
fully invariant elements e such that a A e = 0.
Proof. Indeed, e being weakly fully invariant from a @ ¢; = 1 we derive
e=(eNa)®(eAc;)=eAc; and so e < ¢; for every i € I. Hence e < /\cz
el
Clearly a Ac; = 0,Vi € I imply a A (/\ ¢;) = 0. Observe that aV (/\ ag) = 1
i€l i€l
does not generally hold. O

3. WEAKLY FULLY INVARIANT SOCLE
Let L be a lattice with zero.
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DEFINITION. The join of all the atoms of L, denoted s(L), is called the
socle of the lattice L.

PROPERTIES. (a) s(a/0) < q;
(b) a < b= s(a/0) < s(b/0);

(©) s((/\ @:)/0) < (/\ s(as/0));

i€l i€l
@ (V sai/0)) < s((\/ 0:)/0).
i€l i€l

DEFINITION. A lattice L is called with enough (or ample) pseudocomple-
ments if a A b = 0 implies that a has a pseudocomplement ¢ € L such that
b <ec. Then

LeMMA 3.1. Every inductive lattice has enough pseudocomplements.

Proof. Indeed, set C = {z € Lla Az = 0,b < z}; this is a nonempty subset
of L containing b € C. L being inductive, it is readily checked that each chain
in C has its upper bound in C. Hence, by Zorn’s Lemma, C has at least
a maximal element c. Manifestly, this is also maximal only relative to the
property a A ¢ = 0, and hence it is a pseudocomplement of a in L. U

DEFINITION. ([1]) A complete lattice L is called reducible (or semiatomic)
if its socle s(L) = 1.

THEOREM 3.1. ([1]) A modular, reducible and inductive lattice is comple-
mented and atom generated.

LEMMA 3.2. Let L be inductive and a < b. Then s(a/0) = s(b/0) A a.

Proof. Clearly s(a/0) < s(b/0) and s(a/0) < a and so s(a/0) < s(b/0) A a.
But s(b/0)/0 is reducible and inductive and hence (by Theorem 3.1) s(b/0)Aa
is a join of atoms. If s is such an atom, then s < s(b/0) A a implies s < a or
s < s(a/0). Hence s(b/0) A a < s(a/0) and the required equality. O

LEMMA 3.3. In a modular, inductive lattice L, for arbitrary elements a,b €
L the equality a V (s(1/a) Ab) = s((a V b)/b) holds.

Proof. One uses the modularity and the previous Lemma: aV (s(1/a) Ab) =
(aVb)As(l/a) =s((aVDb)/b). O

Recall an important result:

ProprosITION 3.1. ([1]) Let {a;};.; be an independent subset of an induc-
tive, modular lattice L. Then s((@ a;)/0) = @ s(ai/0).
i€l i€l
LEMMA 3.4. For a weakly fully invariant element b € L in a modular lattice,
if @jcrai = 1 then {a; V b}, ; is independent in 1/b.
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Proof. We present the case |I| =2 that is, a®@c=1,b= (bAa)® (bAc)
imply b= (bVva) A (bVc).

Indeed, by modularity (bVa)A(bVe) = bV (aA(bVc)) = b is equivalent with
aA(bVec) <b. This is verified using the hypothesis and again the modularity,
as follows:

aN(bVe)=aAn((bAa)® (bAc)Ve)=aA((bAa)Vc)
=((bAa)V(cha)=(bAa)VO=bAa<h
O

The construction of the socle in an arbitrary lattice with zero yields by
transfinite induction an ascending chain of elements, named the Loewy series
associated to L,

so(L) < s1(L) € ... £50(L) < sg41(L) < ...
defined as follows:
so(L) =0, s1(L) = s(L) and for an arbitrary ordinal o, s5+1(L) = s(1/s,(L))
or, if ¢ is a limit ordinal, s,(L) = \/ Sa(L).
a<o

THEOREM 3.2. The socle s(L) of an inductive, modular lattice L is weakly
fully invariant. Moreover, so are the terms of the Loewy sequence.

Proof. First notice that s(L) A a = s(a/0) holds in an inductive lattice (see
Lemma 3.2). Then, by Proposition 3.1, for 1 = EB a; we have
el
(L) = (L) A (@) as) = s(@ a1)/0) = (@) s(as/0)) = P(s(L) M),
16l i€l i€l i€l
i.e., s(L) is weakly fully invariant.

This is true also for each term of the Loewy series. By the way of contra-
diction, suppose that this is not true. Then there exists a least ordinal o such
that s,(L) is not weakly fully invariant. Notice that o > 0 and ¢ is not a limit
ordinal. Then for each 1 = @ a; the equality

iel
so-1(L) = sg-1(L) A (D a:) = P (s0-1(L) Aas)
i€l icl
holds. The contradiction we obtain is s,(L) = @(SU(L) A a;) ie.
i€l
b=5(1/55-1(L)) = P(s(1/50-1(L)) A a;) = a.
iel

Trivially b > a holds. Using the modularity of the lattice L and Theorem 1.1,
it suffices to verify aVe =bVe,aAc = bAc where ¢ = s,_1(L). The equalities
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bVec=s(1/s,—1(L)) and b A c = s5—1(L) follow immediately by ¢ < b. Next,
aVe=(P(s(1/s5-1(L)) A ai)) V so-1(L)

i€l
=\ ((5(1/30-1(L)) A as) V 55-1(L))
i€l
=\ (5(1/s0-1(L)) A (@ V 55-1(L)))
i€l
= V s((a: V 85-1(L))/s0-1(L))
i€l
= 5(1/s5-1(L))
using the case 0 = 1 in the quotient sublattice 1/s,_1(L) (indeed, note that
{a; V 85-1(L)};¢y is independent in 1/s,_1(L) — see the previous Lemma 3.4)
and the Lemma 3.3.
Finally, aAc = (EB(s(l/sU_l(L)) A ;) A s5—1(L) = sg—1(L) is equivalent
i€l
with s,_1(L) < @;¢7(s(1/ss-1(L)) Aa;) which follows at once from Sg—1(L) =
Dicr(s0-1(L) A as). O
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