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1. Introduction

The work in this paper is prompted by the idea of looking at the three sets U(R),
idem (R), and nil (R) in any (unital) ring R, which denote, respectively, the unit
group, the set of idempotents, and the set of nilpotent elements in R. In the last
four decades, an additive theory has emerged in the study of these three interesting
sets. In [22], Nicholson defined a ring element a € R to be clean if it can be written
in the form e + u where e € idem(R) and u € U(R). If every a € R is clean, R is
said to be a clean ring. Prompted by this, Diesl [11] defined a ring element b € R
to be nil-clean if b = e +t for some e € idem(R) and ¢ € nil(R). If every b € R
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is nil-clean, R is said to be a nil-clean ring. It is easy to see that nil-clean rings
are always clean [11, Proposition 3.4], though in general, clean rings need not be
nil-clean.

Guided by the definitions in the last paragraph, we investigate in this work the
third (and last) possible way of adding a pair of elements from two of the three
sets U(R), idem (R), and nil(R) above. Thus, we define a nonzero ring element
a € R to be fine if a = u + ¢ for some v € U(R) and some ¢ € nil(R). (The
intuitive idea behind a € R\(0) being fine is that a is “invertible modulo a nilpotent
element.”) Any equation of the form a = u+t¢ will be called a fine decomposition of
a € R\(0), and we will write ®(R) for the set of fine elements in R\(0). (The reason
for stipulating that 0 ¢ ®(R) is that if there exists an equation 0 = w + ¢ where
u € U(R) and ¢ € nil(R), then v = —t would imply that R = 0, which is a trivial
case.) A nonzero ring R with R\(0) = ®(R) will be called a fine ring. For instance,
any division ring is a fine ring, and the converse statement holds for reduced rings.

It turns out that fine rings are quite different from the clean rings and the nil-
clean rings. One very special feature of fine rings is that they are always simple
rings; see Theorem 2.3(2). However, not all simple rings are fine, so fine rings form
a new proper subclass of simple rings.

It is classically well known that matrix rings over simple rings are simple; see,
e.g. [19, Theorem 3.1]. The “analogy” between fine rings and simple rings led us to
the discovery of the following main result in this paper.

Main Theorem. If S is a fine ring, so is M,,(S) for any integer n > 1.

To put things in perspective, we should point out that the result above was
known to be true for clean rings by the work of Han and Nicholson in [15], but not
known to be true or false for nil-clean rings. (See, however, the paper [5] of Breaz,
Calugareanu, Danchev and Micu.)

Since division rings are fine, the Main Theorem implies that all simple artinian
rings are fine rings, although fine rings in general need not be (left or right)
artinian. Thus, the study of fine rings amounts to working with a new class of sim-
ple rings which generalizes the well known classical family of the artinian simple
rings.

From the viewpoint of linear algebra and operator theory, the fact that M,, (D)
is a fine ring for every division ring D amounts to the fact that any nonzero linear
operator ¢ on the vector space D" can be suitably “perturbed” by a nilpotent
operator to become invertible. Alternatively, ¢ can also be suitably “perturbed”
by an invertible operator to become nilpotent. We have not been able to find a
reference for either one of these facts in the linear algebra literature. On the other
hand, it would be of interest to investigate in what way, and to what extent, these
facts can be extended to nonzero operators on infinite-dimensional linear spaces
(such as Hilbert spaces).

In Sec. 2 of this paper, we collect a few basic properties of fine elements and fine
rings, beginning with a quick proof of the simplicity of fine rings. We also show that
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all fine rings R have the property that R = U(R) + U(R), except in the case where
R = Fy. After this preparatory work, the Main Theorem stated above is proved in
Sec. 3. In Sec. 4, we prove some partial results toward the Morita invariance of fine
rings, showing for instance that a matrix ring over a commutative ring S is fine if
and only if S is a field. The last section, Sec. 5, collects a number of results on fine
and clean matrices in My (.S) over a commutative ring S. For instance, it is shown
that, over a commutative domain S, any fine matrix of the form (g g) is clean,
although “fine” and “clean” are shown to be (in general) independent notions in
My (S). To stimulate future work, five open questions are raised in (2.10), (3.14),
(3.15), (4.1) and (5.19).

The terminology and notations introduced so far in this Introduction will be
used freely throughout the paper. Other standard terminology and conventions in
ring theory follow mainly those in [18-20]. Whenever it is more convenient, we will
use the widely accepted shorthand “iff” for “if and only if” in the text.

2. Basic Facts on Fine Elements and Fine Rings

Before we proceed to the study of fine elements and fine rings, we would like to point
out something about them that is related to the issue of commutativity. Following
Nicholson’s definition of strongly clean elements in [23] and Diesl’s definition of
strongly nil-clean elements in [11], it is natural to define a nonzero element a € R
to be strongly fine if there exists a fine decomposition a = u + ¢ such that ut = tu.
If R # 0 and all elements in R\(0) are strongly fine, we say that R is a strongly
fine ring. Similarly prompted by the work of Nicholson and Zhou in [24], we define
a nonzero ring R to be uniquely fine if every element in R\(0) has a unique fine
decomposition. While these are all natural definitions, they turn out not to amount
to anything really new, as the following easy result shows.

Proposition 2.1. For any ring R, the following statements hold.

(1) An element a € R\(0) is strongly fine iff a € U(R).

)
(2) R is strongly fine iff R is a division ring.
(3) R is fine and unit-central (i.e. all units are central) iff it is a field.
(4) R is uniquely fine iff R is a division ring.

Proof. (1) Of course, units in a nonzero ring are always strongly fine. Conversely,
if a € R\(0) has a strongly fine decomposition u + ¢, then a = u (1 + u~'t) € U(R)
(since ut = tu implies that u~'t € nil(R)). This proves (1), which clearly implies (2).

(3) It suffices to prove the “only if” part, so assume that R is fine and unit-
central. Clearly, R is then strongly fine, so it is a division ring by (2). Since all units
are central, R is a field.

(4) Again, it suffices to prove the “only if” part, so assume R is uniquely fine. If
we can show that R is a reduced ring, it will be a division ring (as we have pointed
out in Sec. 1). For any ¢ € nil(R), we have 1 + ¢ # 0 (since R # 0). From the two
fine decompositions 1+t = (1 +t) 4+ 0, we conclude that ¢t = 0. |
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Next, we will make a series of observations about fine elements and fine rings. In
the following, Z(R) denotes the center of a ring R, and rad(R) denotes the Jacobson
radical of R.

Proposition 2.2. (1) For any nonzero ring R, ®(R)N Z(R) = U(Z(R)).

(2) ve UR) = v®(R)v~ ! = ®(R). Ifve UR)N Z(R), then v®(R) = ®(R).

(3) If R # 0 and nil(R) C rad(R), then ®(R) = U(R). (In particular, this equality
holds for all local rings and all nonzero 2-primal rings,® including all nonzero
commutative rings.)

Proof. (1) The inclusion “2” is trivial. Conversely, for any a € ®(R) N Z(R), take
a fine decomposition a = u + t. Noting that u commutes with ¢t = a — u, we have
a=u(l+u"'t) € UR)-U(R) C U(R). Thus, a € U(Z(R)).

(2) The first conclusion is clear. The second conclusion follows from the fact
that if @ = u+ ¢ is a fine decomposition of a € ®(R), then va = vu + vt is a fine
decomposition of va for any v € U(R) N Z(R).

(3) Finally, under the assumptions in (3), if « € R has a fine decomposition
u +t, then t € nil(R) = ¢ € rad(R). Therefore, a € u +rad(R) C U(R). O

Theorem 2.3. (1) If a € ®(R), then RaR = R.

(2) Any fine ring R is a simple ring.

(3) For any unital ring homomorphism f : R — S where S # 0, f(®(R)) C &(9).
(4) Let I be a nil ideal of R, and let a € R. Then a € ®(R) iff a € ®(R/I).

Proof. (1) Let a = u +t be a fine decomposition. In the factor ring R = R/RaR,
the unit w = —7 is nilpotent. This implies that R = {0}; that is, RaR = R.
(Alternatively, (a —u)™ = " = 0 for some integer n > 1. Expanding the nth power,
we have u” € RaR, so RaR = R.)

(2) If R is a fine ring, (1) implies that RaR = R for every nonzero a € R. This
means precisely that R is a simple ring.

(3) Let @ € ®(R). Then RaR = R by (1). Since f(R) # 0, we have f(a) # 0.
After knowing this, it is clear that f(a) € ®(9).

(4) The “only if” part follows easily from (3). Conversely, if @ € ®(R/I), take
a fine decomposition @ = w+ ¢ in R/I. Since I C rad(R), we have u € U(R).
Moreover, a —u = t € nil(R/I) implies that a — v € nil(R) (since I is a nil ideal).
Thus, a € u + nil(R). Clearly, a # 0, so we have a € ®(R). m|

Corollary 2.4. A local ring (R, m) is a fine ring iff R is a division ring.

Proof. The “if” part was already pointed out in Sec. 1, and the “only if” part
is clear from both Theorem 2.3(2) and Proposition 2.2(3). (For a somewhat more
general conclusion, see Corollary 3.11.) O

2A ring R is called 2-primal if nil(R) is contained in the prime radical of R; see [19, p. 195]

1650173-4



J. Algebra Appl. Downloaded from www.worldscientific.com
by WSPC on 12/28/15. For personal use only.

Fine rings: A new class of simple rings

In contrast to Theorem 2.3(2), it is easy to see that simple rings need not be
fine. Indeed, if we take any simple domain R that is not a division ring (e.g. a Weyl
domain in characteristic zero as in [19, (3.17)], or a twisted Laurent polynomial
ring k [z, 271; 0] as in [19, (3.19)] where o is an automorphism of infinite order on
a field k), then R cannot be fine since nil(R) = 0. However, this is not the only way
in which one can construct non-fine simple rings. A rather different construction
can be based upon the observation below.

Proposition 2.5. If nil(R) is a nonzero additive subgroup in a ring R, then R is
not a fine ring.

Proof. Fix an element ¢y € nil(R)\(0). If R is a fine ring, then ¢ty = u + ¢ for some
u € U(R) and ¢ € nil(R). The hypothesis implies that u = to — ¢ € nil(R), so we
must have v = 0. Thus R = (0), which contradicts the fact that to # 0. O

Example 2.6. Using the work of Dubrovin [12], Chebotar, Lee and Puczylowski
have constructed in [9, Theorem 10] a (unital) simple ring R in which nil(R) is a
nonzero subring. By Proposition 2.5, R cannot be a fine ring.

Example 2.7. As we have mentioned in Sec. 1 (and will prove in Corollary 3.11),
any artinian simple ring is fine. However, there do exist fine rings that are (simple
but) not left or right artinian. To name such an example, we use the easily verified
fact that if a ring R is a direct limit of a directed system of fine rings {R;}, then R
is itself a fine ring. In [19, pp. 39-40], there is an example of an ascending chain of
simple artinian rings Ry C Ry C Re C --- whose union R is a non-artinian simple
ring. Since each R; is a fine ring, so is R.

Next, we recall (e.g. from [14]) that, for a positive integer n, a ring R is said
to have the n-sum property if every element of R is a sum of at most n units. (See
also [4], where a slightly different terminology was used.) Part (1) of the following
result implies that any fine ring has the 2-sum property. More precisely, part (2)
shows that, with only one exception (namely, the field Fq), fine rings are 2-good in
the sense of Vdmos [25] (namely, every element is a sum of two units).

Theorem 2.8. For any fine ring R, the following statements hold:

(1) R={1}U(U(R) + U(R)).
(2) R is 2-good iff |R| # 2.

Proof. (1) Consider any @ € R. If a # 1, then a« — 1 € ®(R), so it has a fine
decomposition v + ¢t. Thus, a = u+ (1 +¢) € U(R) + U(R).

(2) It suffices to prove the “if” part, so assume that |R| > 2. In view of (1), we
need to only show that 1 € U(R) 4+ U(R). First assume that U(R) = {1}. For any
a € R\{0}, we have a fine decomposition a = u+1t, so a = 1+t € U(R), and hence
a = 1. This gives |R| = 2, which is not the case. Thus, there exists a unit v # 1.
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Taking a fine decomposition 1 —v = u' + ', we have w:= v+ v =1—-t € U(R),
and so 1 = w™ ' +w™tv € U(R) + U(R), as desired. 0

Remark 2.9. As an interesting example for Theorem 2.8(2), let R = M., (D) where
D is a division ring. As we have mentioned earlier, R is a fine ring. The fact that
R is 2-good except in the case where n = 1 and D = Fy (simultaneously) was first
proved by Zelinsky in [26]. In view of this, we may think of Theorem 2.8(2) as a
“fine analogue” of Zelinsky’s classical result on simple artinian rings.

Theorems 2.3(2), 2.8(2) and Remark 2.9 led us to the following.

Question 2.10. If a simple ring R is 2-good, is R necessarily a fine ring?

The answer is very possibly “no”, but we are not aware of any counterexam-
ples. A weaker and somewhat more specific form of this question will be posed in
(3.15)(A).

In [6, 10], a ring R is called a UU ring if all units in R are unipotent; i.e. if
U(R) C 1+ nil(R). In trying to determine which fine rings are UU, we find an easy
answer in the following result.

Proposition 2.11. A ring R is fine and UU iff R = F.

Proof. The “if” part is trivial. Conversely, let R be UU and fine, but assume, for
the moment, that |R| > 2. In the proof of Theorem 2.8(2), we have shown that
1 = uy + ugy for some uq,us € U(R). Since R is UU, u; — 1 = —us € nil(R) NU(R).
This implies that R = 0, which is not the case. Therefore, we must have R = [F,.
O

We close this section by noting the following curious result on sums of two fine
elements in matrix rings.

Proposition 2.12. If R = M, (S) where n > 2 and S is any nonzero ring, any
matriz M is a sum of two fine matrices.

Proof. We can write M = D+ T +T5 where D is a diagonal matrix, T} is strictly
upper triangular, and T is strictly lower triangular. By [16], we can further write
D = U; + Uz where each U; is invertible. Clearly, Uy + 11 # 0 # Us + T», so
M = Uy +T1) + (U2 + T2) € ®(R) + ®(R). O

3. Matrix Rings Over Fine Rings

Since matrix rings over simple rings are simple (see, e.g. [19, Theorem 3.1]), it is
natural to ask whether this statement has a valid analogue for fine rings. The goal
of this section is to prove the following Main Theorem of this paper.

Theorem 3.1. For a fine ring S, any matriz ring M, (S) is fine.
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Throughout this section (except in Corollary 3.11 and Remark 3.12), we let
R :=M,,(S) where S is a nonzero ring (not assumed to be fine unless it is explicitly
so stated). To investigate the fineness of the matrices in R, the following basic
observation will be crucial.

Proposition 3.2. Let M = (é g) € R =M, (5), where A € My(S) and D €
M, —,(S). If A€ (M (S)) and D € ®(M,,_,(5)), then M € ®(R).

Proof. Let A =U+T and D = U’ + T’ be fine decompositions in My (S) and
M, —1(S) respectively. Then

(U 0) (T B)
M = + . (%)
c U 0o T

Here, the first matrix on the right-hand side is invertible in R. On the other hand, a
high power of the second matrix on the right-hand side is strictly upper triangular,
so the second matrix is nilpotent in R. Thus, () above is a fine decomposition for
M in R. O

Remark 3.3. Perhaps not surprisingly, a more abstract formulation of Proposition
3.2 is possible in terms of general Peirce decompositions in an arbitrary ring R. To
be more precise, if e, f are complementary idempotents in R, and a € R is such
that eae € ®(eRe) and faf € ®(fRf), we have shown in [7] that a € ®(R).

Applying Proposition 3.2 with an induction on the number of diagonal blocks
of a block matrix, we arrive at the following result.

Theorem 3.4 (Block Theorem). If M = (A;;) € R = M, (S) is a block matriz
where the blocks {A;;} are such that each Aj; is a fine square matriz, then M €
®(R).

The discussions above suggest strongly that Theorem 3.1 should also be provable
by induction on n. For such an induction to work, we will need to be able to
“create” nonzero diagonal blocks out of a given nonzero matrix. To facilitate such a
creation process, it will be convenient for us to use the following somewhat informal
terminology.

Definition 3.5. For n > 2, we say that a matrix (,’? 1) € R is “in good form” if

A € M,,_1(S) is nonzero and d € S is also nonzero.

In view of Proposition 2.2(2), we can often work with elements of R = M, (5)
“up to conjugation”. Throughout this paper, when we say “conjugating M by an
invertible matrix V7, we will mean “passing from M to VMV 17 In the next few
results, we shall investigate the possibility of bringing a nonzero matrix into good
form by similarity transformations. We start with the case of 2 x 2 matrices over S.

Lemma 3.6. Suppose there exists an equation 1 = u+v € S where u,v € U(S).
a b
(&

Then any matrizc M = ( d) with a # 0 is similar to a matrix in good form.
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Proof. We may assume that d = 0 (for otherwise M is already in good form). To
get the desired conclusion, we will consider the following three cases.

Case 1. b = ¢ = 0. Here, conjugating M by () }) € GLa(8) gives (" "),
which is in good form (since ua # 0 # va).

Case 2. ¢ # 0. Here, conjugating M by (é _1) € GLy(S) gives (“ . © a+i— 9. If
¢ # a, this matrix is in good form, and we are done. If ¢ = a, conjugating M by

*

1
(o 1) gives (™ " ), whichisin good form so we are also done. In particular,

for b = 0, this argument would take care of the case (¢ J). Thus, it would have

also taken care of the case (g 8)

Case 3. ¢ = 0. Here, in view of Case 1, we may assume that b # 0. Conjugating
M by G (1)) € GLo(S5) gives (Z :Z z). If a # b, this matrix is in good form. The

remaining case M = (; ) was covered by the last remark in Case 2 above. |

Corollary 3.7. Suppose there exists an equation u+v =1 € S where u,v € U(S).
Then any nonzero matriz M = (Z Z) € M (S) is similar to a matrixz in good form.

Proof. If a # 0, Lemma 3.6 applies. If d # 0 instead, we can conjugate M into

(Z 2) to go back to the first case. Now assume a = d = 0, and say ¢ # 0. Conju-

gating M = (0 0) by (5 1) takes M to (¢ *~,°), which is in good form. |
Remark 3.8. Note that the assumption 1 € U(S) + U(S) cannot be dropped from
the above corollary. Indeed, if S = F3, the four matrices M; = (i ;) cannot, be

similar to a matrix in good form since the latter matrix has trace 0, while each M;
has trace 1.

Next, we proceed to the case of n X n matrices.

Proposition 3.9. Suppose there exists an equation uw +v = 1 € S where u,v €
U(S). Then for any n > 2, any nonzero matrix M = (;4 g) € R =M., (S) (where
de S and A€M, _1(S)) is similar to a matriz in good form.

Proof. We induct on n, the case n = 2 being already covered by Corollary 3.7.
Working with n > 3, we may assume that the conclusion holds for nonzero matrices
in M,,—1(S). We consider the following two cases.

Case 1. A # 0. Here, we may assume (after a conjugation) that A is in good form.
Then the northeast (n —2) x (n —2) block of M is nonzero, and the southeast 2 x 2
block A’ of M has (1, 1)-entry nonzero. By Lemma 3.6, we can conjugate A’ into a
matrix in good form. Thus, we can conjugate M itself into a matrix in good form.

Case 2. We may now assume that A = 0. By the same token, we may assume that
the southeast (n—1) x (n—1) block of M is also zero. Thus, all entries of M are zero
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except possibly its (n, 1)-entry ¢ and its (1,n)-entry b. Without loss of generality,
say ¢ # 0. Here, we can apply again the trick used in the proof of Corollary 3.7;
that is, conjugating M by the elementary matrix I,, + F1, takes M into a matrix
with northeast (n — 1) x (n — 1) block nonzero, so we are back to Case 1. m|

We are now ready to present the following.

Proof of Theorem 3.1. We let R = M,,(S) as usual, and assume that S is a fine
ring. The proof will be by induction on n, the case n = 1 being trivial.

We will first work in the case where |S| > 2. Here, 1 € U(S) + U(S) by The-
orem 2.7(2). For n > 2, consider any nonzero M = (;4 g) € R. To prove that
M € ®(R), we may assume by Proposition 3.9 that M is in good form; i.e. A # 0,
and d # 0. By the inductive hypothesis, A € ®(M,,_1(S5)), and S being a fine ring
implies that d € ®(5). By Proposition 3.2, we have then M € ®(R).

We may now assume that S = Fs. Indeed, the rest of the proof, again by
induction on n, will work for any division ring S. To prove that M = (;4 5) #0
is in ®(R), we begin by noting that, by the argument in Case 2 in the proof of
Proposition 3.9, we may assume (up to similarity) that A # 0. If d # 0, we are
done by the argument at the end of the last paragraph. So we may assume that
d = 0. By the inductive hypothesis, we have a fine decomposition A = U + T in
M,,—1(S). Thus, we can write

M:(Uﬂ+ﬁ+<T_ﬁ, (3.10)
v 0 0 0

where § is a column vector that is to be chosen. Here, the second summand is
nilpotent, so we are done if § can be chosen such that the first summand on the
right-hand side of (3.10) is invertible. We go into the following two cases.

Case 1. v # 0. Following an idea of Kaplansky that was introduced by Henriksen
in his paper [16], we perform on the first summand of the right-hand side of (3.10)
the following block elementary transformation:

Lot 0\ (U B+8\ (U B+5
—~ U™ 1)\ 0 ) \o —UB+8)

In view of this equation, we are done if § can be chosen such that yU~1(8+6) = 1,
for then the first summand on the right-hand side of (3.10) will be invertible. Since
v # 0, we have y U ! # 0 too, so we can certainly solve the equation v U~ 1(3+9) =
1 over the division ring S since (by varying 0) the vector § + 0 can be arbitrarily
chosen.

Case 2. 7= 0. If § # 0, we can repeat the above argument to complete the proof.
Thus, we may also assume that § = 0, so now M = (64 8). Suppose the ith row
~v" of A is nonzero. Conjugating M by the elementary matrix I,, + E,;, we arrive
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at a new matrix (,’?/ 8) where v’ # 0. We are now back to Case 1, so the proof is
complete. O

For any ring R, we have the following important consequence of Theorem 3.1.

Corollary 3.11. R is a simple artinian ring iff it is a semilocal fine ring.

Proof. If R is simple artinian, the Wedderburn—Artin theorem [19, (3.5)] implies
that R = M, (5) for some division ring S and some n > 1. Since S is fine, so is R
by Theorem 3.1. Conversely, if R is semilocal and fine, then R is a simple ring by
Theorem 2.3(2); in particular, rad(R) = 0. Invoking the definition of a semilocal
ring (as in [19, (20.1)]), we see that R = R/rad(R) is a (simple) artinian ring. O

Remark 3.12. From a linear algebra point of view, the most relevant fact is the
“only if” part of Corollary 3.11; namely, that M, (S) is a fine ring for any division
ring S. In this case, we should observe that, as long as |S| > 2, Proposition 3.9
shows that we can conjugate any nonzero matrix M € M, (S) into a matrix N with
all diagonal entries nonzero. From this, it follows right away that N is the sum
of an invertible lower triangular matrix and a strictly upper triangular (and hence
nilpotent) matrix.

For certain ring classes §, it may be true that the fine rings in § are all (simple)
artinian. An all-too-obvious example of such § is the class of reduced rings. A
second example of § is the class of semilocal rings, according to Corollary 3.11. Yet
another example turns out to be the class of endomorphism rings of abelian groups.
This is shown by the following result, which depends heavily on the endomorphism
theory of abelian groups (as developed, e.g. in Fuchs’ book [13]).

Theorem 3.13. For R = Endy(G) where G is any nonzero abelian group, the
following four statements are equivalent:

1)

(2) R is simple artinian.
(3) R is a fine ring.
(4)

4) G is a finite-dimensional vector space over Q or over I, for some prime p.

R is simple.

R
R

Proof. The equivalence of (1), (2) and (4) is given by [13, Theorem 111.2]. To link
these three statements to (3), we simply recall that (3) = (1) is Theorem 2.3(2),
and (2) = (3) is the “only if” part of Corollary 3.11. O

The above discussions prompted us to ask the following.

Question 3.14. What are some examples of classes of exchange rings in which the
fine rings are (simple) artinian?
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More generally, it would be of great interest to determine all fine rings among
the exchange rings; hence Question 3.15, part (A) of which is a more specific form
of Question 2.10 in view of the result of Camillo and Yu [8, Proposition 10] that a
clean ring is 2-good if 2 is invertible.

Question 3.15. Which simple exchange rings are fine? Just to name a few concrete
special cases, we can ask the following two sub-questions.

(A) Is a simple clean ring R with 2 € U(R) always fine? (A closely related question
would be: which simple unit-regular rings are fine?)

(B) Are there some examples of fine rings among the purely infinite simple rings
defined by Ara, Goodearl and Pardo in [3]? (According to Ara [2], the latter
rings are always exchange rings.)

4. Corner Rings

This section is devoted to the consideration of the important question whether the
notion of a fine ring is Morita-invariant, that is, whether the property of being a
fine ring is preserved by the Morita equivalence of rings. For the relevant definition
of (and facts about) Morita equivalence, see [18, Sec. 18]. Since we did know from
Theorem 3.1 that the fineness of rings is preserved by the formation of matrix rings,
a standard result in the literature (see, e.g. [18, (18.35)]) implies that the Morita
equivalence question above boils down to asking the following.

Question 4.1. If R is a fine ring and e € R is a full idempotent (that is, an
idempotent such that ReR = R), is the corner ring eR e necessarily a fine ring?

In view of Theorem 2.3(2), such a question is completely in line with the well-
known fact that any nonzero corner ring of a simple ring is simple. But Question 4.1
posed for fine rings turns out to be much harder to answer. One may begin by
asking more generally how the fine elements of eRe are related to those of R. On
this question, one quick thing we can say is the following, even without assuming
the idempotent e to be full. Letting f be the complementary idempotent 1 — e, we
have the obvious inclusion relations U(eRe) + f C U(R), and nil(eRe) C nil(R).
Together, these two inclusions imply that

D(eRe)+ f C O(R). (4.2)

However, for a general element a € eRe, a + f € ®(R) may not imply that a €
®(eRe). (This is in sharp contrast to the situation with the sets of unit-regular
elements in R and eR e studied by Lam and Murray in [21].) Examples illustrating
this will be given in (4.3), (4.5) below, as well as later in (5.8).

While (4.2) does provide a relation between the two fine sets ®(eRe) and ®(R),
it is far from sufficient for answering Question 4.1. One might wonder if some other
relation between ®(eRe) and ®(R) may be better suited for getting a positive
answer for (4.1). For instance, if it is true that eRe N®(R) C ®(eRe) (for any full
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idempotent e € R), then certainly (4.1) would have a “yes” answer. Unfortunately,
this inclusion relation does not hold in general, as the following examples (4.3) and
(4.5) will show.

Example 4.3. Taking R = Mj3(Z) and e € R to be the full idempotent
diag (1,1,0), we identify S:= eRe with My(Z) (which corresponds to the “2 x 2
northwest corner” of M3(Z)). Let A = (7;} (2)), which will be shown to be a non-
fine element of S (in (5.9) below). As an element of S, A is identified with the
3 x 3 matrix diag (A,0) € R. This matrix turns out to be in ®(R) since it has the
following fine decomposition:

1 2 0 1 1 0 0 1 0
30 0|=U4T=|-20 1|+]|-1 o -1, (4.4)
0 0 O 01 0 0 -1 0
where det(U) = —1, and 7% = 0. Remarkably, essentially the same construction

can be used to show that the 3 x 3 matrix diag(A, 1) is also in ®(R): we can simply
use the modified fine decomposition diag(A,1) = U’ + T where U’ is the matrix
obtained from U by changing its (3, 3)-entry from 0 to 1 (with det(U’) = 1).

Example 4.5. We will show here that the inclusion relation eReN®(R) C ®(eRe)
may fail even in the case where R is a 2 X 2 matrix ring over some ring S and
e = diag(1,0) (which is a full idempotent of R that is similar to its complementary
idempotent). To get such an example, let S = My(Z) as in (4.3). For this choice
of S, R:= Mjy(S) may be identified with My(Z), and S may then be identified

with eRe. Taking the same non-fine matrix A = (_3 ;) € S as in (4.3), we can

check again that (64 8) € M3 (S5) is a fine matrix in My (Z), with the following fine
decomposition:

1 2 0 0 01 0 -1 1 1 0 1
-3 0 0 O 0 0 1 -3 0 -1 -2
= Ul + T1 = —+
00 0 O 01 0 0 0 -1 0 0
0 0 0 O 1 10 1 -1 -1 0 —1
(4.6)
Here, det(U;) = —1, and T3 = 0. Just as in Example 4.3, essentially the same

construction here can be used to show that diag(A4, 1,1) is also fine in My(Z), with
a fine decomposition U] 4+ T where U] is obtained from U; by changing its 2 x 2
southeast corner diag(0, 1) into diag(1,2), with det(U7) = 1.

For a € eRe, the fact that a + (1 — ¢) € ®(R) need not imply a € ®(eRe),
and that in general eReN®(R) € ®(eRe) for full idempotents e € R should not
entirely dash our hopes for a positive answer to Question 4.1. This is because,
in working with Question 4.1, we are under the strong assumption that all (not
just some) elements of R\{0} are fine. In Theorem 4.8 below, we will show that
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Question 4.1 does have a positive answer in a special case. Its proof will be based
on the following observation.

Lemma 4.7. If A = (ai;) is a fine matriz in a matriz ring R = M, (S) where S is
any ring, then ), Sa;;S = S. In particular, if A = aE;j; € ®(R) for some a € S
and some matriz unit E;;, then SaS = S.

Proof. It suffices to prove the first conclusion. Let J = ;. S a;;S. Over the factor
ring S/J, the zero matrix is the sum of an invertible matrix and a nilpotent matrix.
As we have seen already, this implies that S/J = 0; that is, J = S. O

Note that, in the last conclusion of the lemma above, we can only conclude that
SaS =S, but not necessarily a € ®(S). This was exactly what Example 4.5 was all
about (in the case where S = My(Z) and n = 2). Nevertheless, if S is a commutative
ring, we have the following much sharper result.

Theorem 4.8. Let R = M, (S) where S is a commutative ring. If a € S is such
that aE;j; € ®(R) for some i,j, then a € U(S). In particular, R is a fine ring iff S
is a field.

Proof. By Lemma 4.7, we have SaS = S. Since S is a commutative ring, it follows
that a € U(S). This gives the “only if” part of the last statement in the theorem.
The “if” part follows from Theorem 3.1. |

In connection to the theorem above, there is also the question whether, over
any ring S, a € ®(S) would imply that aE;; € ®(M,(S)) for all 7, j. The answer to
this question turns out to be “yes”. However, in order not to further lengthen this
paper, the proof of this fact from [7] will not be presented here.

5. 2 X 2 Matrices: Fine Versus Clean

In this section, we specialize our study of fine elements to the case where R = M(S5).
In order to use the powerful determinantal criterion for the invertibility of matrices,
we shall assume throughout this section that S is a commutative ring. The following
result gives a simple criterion for a matrix (8 8) € R to be fine, and also relates
the fineness property of such a matrix to its cleanness property. The formulation of
this result is largely inspired by the techniques developed by Khurana and Lam in
the paper [17].

Theorem 5.1. Let R = My(S) where S is a commutative domain. Then A =

(8 8) € R is fine iff b+ aS contains a unit of S. In this case, A is necessarily a

clean matriz in R.

Proof. First assume that A € ®(R). Then there exists 7' € nil(R) such that
A—T € U(R). By working over the field of quotients of S, we see that T2 = 0, and
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det(T') = tr(T) = 0. Thus, T has the form (; *,) for some s,2,y € S such that

s2+2y=0. As A —T € R is invertible, we have
vi=det(A-T)=(a—s)s+ (b—z)y =as+ by € U(S). (5.2)

Note that y € U(S). For if otherwise, y would be contained in a maximal ideal m
of S. Then s? + 2y = 0 implies that s € m too, and (5.2) would give v € m, a
contradiction. From (5.2), we have thus b+ a (sy~!) = vy~ € U(9).

Conversely, suppose there exists s € S such that b+ as € U(S). We complete
the proof by essentially reversing the steps in the above work. Taking y = 1 and
x = —s2, we have s + a2y = 0, so the matrix T:= (Z ) satisfies T? = 0. Also,
the computation in (5.2) shows that det(A —T') = as + by = as + b € U(S). Thus,
A —T € U(R), and hence A € ®(R). (Notice that this part of the proof is valid as
long as S # 0. We do not need to assume here that S is a domain.)

The last statement of the theorem is a special case of [17, Proposition 4.6] which
gave a sufficient condition for the cleanness of 2 x 2 matrices with second row zero.
To make our arguments completely self-contained, we will give an ad hoc proof
here. Suppose b+ as € U(S) for some s € S. To show that A is clean, let E be the
idempotent matrix (1 e a+ S)) € R. Then

—S

a—1—5 b+s+ s>
det(A — E) = det ) =as+be U(S). (5.3)
— s
Thus, A — E € U(R), so A is a clean matrix in R, as desired. O

Since U(Z) = {£1}, the following is an immediate consequence of Theorem 5.1.

Corollary 5.4. A matriz A = ({ g) € My (Z) is fine iff b = +1 (mod a). In this
case, A is necessarily a clean matriz in Ma(Z).

Next, we note that the following result holds without a domain assumption on .S.
For the notion of rings of stable range one, see [19, (20.10)].

Corollary 5.5. If S # 0 is a commutative ring of stable range one, then A =
(8 8) € R = My(9) is fine iff aS + bS = S. In this case, A is necessarily clean
n R.

Proof. The “only if” part follows from Lemma 4.7. For the “if” part, assume that
aS+bS = S. Since S has stable range one, b+ aS contains a unit of S. The second
paragraph in the proof of Theorem 5.1 (without any domain assumption on S') now
shows that A € ®(R), and the rest of that proof shows that A is clean in R. O

In spite of the last conclusion in Theorem 5.1, it turns out that “fine” and
“clean” are independent notions, say for 2 x 2 matrices over commutative rings. The
following example shows that nonzero clean elements in Mx(S) may not be fine.
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Example 5.6. Let R = Mj(S), where S is a commutative ring. For any non-unit

b € S, the nilpotent matrix A = (} () € R is clean.” However, since bS # S, A

is mot fine by Lemma 4.7. Alternatively, we can take a matrix such as A’ = (8 g)

This is also clean, with a clean decomposition (_g _g) + (g ;) But A’ is not a fine
matrix in My(Z) according to Corollary 5.4. (Of course, if we are not restricting
ourselves to rings of the form My (.S), then for any local ring R, all elements of R
are clean, but only the units of R can be fine by Proposition 2.2(3).)

To construct a 2 x 2 matrix that is fine but not clean, we first give a criterion
for a diagonal matrix diag(a, 1) to be clean in Ms(S).

Theorem 5.7. Over a commutative domain S, a diagonal matriz A = diag(a, 1)

is clean in R =My (S) iff a € U(S) U (1 +U(Y9)).

Proof. If a € U(S), then A € U(R) is obviously clean. If a = 1 + u for some
u € U(S), then A = diag(1,0) + diag(u, 1) is also clean. Conversely, assume that
A is clean, and take a clean decomposition A = E + U € R, where E = E? and
U € U(R). Clearly, E # I, since A — I = diag (a — 1,0) ¢ U(R). If E = 0, then
A =U € U(R) implies that a € U(S). Assuming now that E ¢ {0, I} (and S is a
domain), it is easy to see (e.g. from the Cayley—Hamilton theorem) that F has the

o) where 5,2,y € S satisfy s (1 — s) = zy. Then

form (y

det(U) =det(A—E)=s(a—s)—ay =sa—s>—zy=s(a—1) € U(S)

implies that a — 1 € U(S), so we have a € 1 + U(5). O

Example 5.8. In the setting of Theorem 5.7, if we take any a ¢ U(S)U (14 U(5)),
then A = diag(a, 1) € R is not clean. However, A is always fine (for every a € S),
as it has a fine decomposition (afll é) + (_1 _}) Thus, for instance, if we choose
a=3ora=—2in S = Z, then the matrix A = diag(a, 1) is fine but not clean
in My(Z). Incidentally, this construction provides once more an example of a full
idempotent e in a ring R and an element a € eR e such that a4 (1 —e) € ®(R) but

a ¢ D(eRe).

Example 5.9. The work in our earlier Example 4.3 was based on knowing that a
certain integral matrix, namely (_:1.) (2)), was not fine in R = My (Z). We shall now

give a full proof for this fact. More generally, we start with a matrix B = (i g), and
first work out the criterion for B to be fine in R. The fineness condition amounts
to the existence of a nilpotent matrix 7' € R for which det(B — T') € {£1}. Since

Z is an integral domain, we have (as in the proof of Theorem 5.1) T' = (Z ‘) for

bIn general, any nilpotent element ¢ in any ring is (strongly) clean since it has an obvious (strongly)
clean decomposition t =1+ (¢t — 1).
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some s, x,y € Z such that s + 2y = 0. Thus, the condition for B to be fine can be
stated in the form

l—-s b—=x
det =s(l—s)—(b—xz)(c—y)=s—bc+ cx+ by = £1.
c—y s

Letting r := bc41, we have then s = r — (cx + by), so the equation s + 2y = 0
becomes

x4 (2bc + 1) zy + b2y? — 2crz — 2bry + 1% = 0. (5.10)

Plugging in (b, ¢) = (2, —3) gives the following two diophantine equations:
922 — 112y + 4y — 30z + 20y + 25 = 0; (5.11)
922 — 1lay + 4y — 422 + 28y + 49 = 0. (5.12)

A quick computer check (using any standard binary quadratic equation solver, such
as [1]) shows that neither one of these equations has a solution (z,y) € Z?. This
proves that the matrix B is indeed non-fine in R. However, B turns out to be both
clean and nil-clean, according to the following two easy decompositions:

(6D e

Somewhat surprisingly, if we choose (b, ¢) = (2,3) instead (changing only the sign
of ¢), then the equation (5.10) has no solution when r = bc — 1, but has ezactly
two solutions (—1,4) and (9, —16) when r = bc+ 1, according to the computer.
What this means is that the corresponding new matrix B; has precisely two fine
decompositions (in R):

1 2 -1 3 2 -1 —-11 =7 12 9
By = = + = + :
30 -1 2 4 -2 19 12 —-16 —12
(5.14)
If one is lucky enough to have “guessed” both of these fine decompositions, one

is encouraged to try instead (b,¢) = (6,7). In this case, the computer opined that
there is a unique fine decomposition (in R = Ms(Z)); namely,

1 6 —417 —-355 418 361
By = = + . (5.15)
7 0 491 418 —484 —418
This would have (perhaps) defied any guesswork. On the other hand, if we replace

the ring Z by the field Q and work in My (Q) instead, the matrix By has obviously
infinitely many fine decompositions, including, for instance,

By— (1 O (! 64 AT 6 5.16
e e B TR el (for any ¢ € Q\{6}).  (5.16)

In connection to the work above, we point out that the use of computers in this
analysis may lead to new positive results too. For instance, computer calculations
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indicated that, in many cases where ¢ = b or ¢ = b+ 2, the equation (5.10) did have
a solution (or solutions) in Z. Based on such empirical data, we find without too
much difficulty the following nontrivial fine decompositions (over Z), respectively,
for the matrices B3 and By in the cases wherec=band c=b+2=s+1:

1 b - P41 L 11 (5.17)
b 0) \p24+b+1  B2+1 -1 -1) ’
1 s—1 241 —s24+s5—1 9 -1 1

= +s . (5.18)
s+1 0 s24+s+1 -5 -1 1

Here, on the right-hand side of both equations, the second matrix is nilpotent
and the first matrix has determinant 1. Based on (5.17) and (5.18), one might
be tempted to conjecture that, in the “intermediate case” ¢ = b + 1, the matrix
Bs = (bi 1 8) might also be fine in My(Z), which we knew to be true at least for
b e {2,6} (by (5.14) and (5.15)). By another computer check using the equation
(5.10), one can show that this “conjecture” is true for b € {0,1,...,6}, but is,
unfortunately, false for b € {7, 8}.

In the spirit of investigating the relationship between “fineness” and “cleanness”,

we close the paper with one more query.

Bs

By

Question 5.19. Is every fine ring necessarily a clean ring?

Needless to say, the fact that fine elements in rings may not be clean does not
preclude this question from having a positive answer. In fact, all examples of fine
rings known to the authors have turned out to be clean (or even strongly clean)
rings.
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