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Abstract

We correct a typo and an incorect remark (which are not essential in
the paper), and develop over Z the main result.

The main result in [1] is the following

Proposition 1 Let R be a (commutative) integral domain and let U be an
arbitrary matrix in M2(R). There is a nilpotent matrix N ∈ M3(R) which has
U as the northwest 2×2 corner, whenever there exist elements a, b, x, y ∈ R such
that ax+by = det(U)−Tr(U)2 and bxu12+ayu21−axu22−byu11 = Tr(U) det(U).
Such a matrix exists if (e.g.) u12 or u21 is a unit.

Conversely, if N is a 3 × 3 nilpotent matrix which has U as the northwest
2 × 2 corner, the previous relations hold for a = n13, b = n23, x = n31 and
y = n32.

The correction of a typo: in the proof, commenting the special case
u12 is a unit, a completion is indicated, namely, a = 0, b = 1, y = m, x =
(l +mu22)u

−1

12
, and if u21 is a unit, x = 0, y = 1, b = m, a = (l +mu22)u

−1

21
.

In both formulas, u22 must be replaced by u11, that is x = (l +mu11)u
−1

12

and a = (l +mu11)u
−1

21 , respectively.

The correction of remark 1, p. 3: if a = b = x = y = 0 then clearly
det(U) = Tr(U) = 0 (i.e., U is nilpotent) from the conditions in the Proposition
1.

However, the converse fails: if U is a 2 × 2 nilpotent, the completion with
a = b = x = y = 0 clearly gives a 3 × 3 nilpotent N , but this is not the only

possible completion. For example,





1 1 1
−1 −1 −1
1 1 0





3

= 03, and the nilpotent

U is completed with a = x = y = 1, b = −1.
Rephrasing, ax+ by = 0 = bxu12 + ayu21 − axu22 − byu11, u11 + u22 = 0 =

u11u22 − u12u21 do not necessarily imply a = b = x = y = 0.
We can also obtain an index 2 nilpotent by completion of the same U :
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



1 1 0
−1 −1 0
1 1 0





2

= 03

Addendum. From now on we take R = Z, the integers and continue to use
the notations m = det(U)− Tr(U)2, l = Tr(U) det(U).

What we intend to discuss here in the generation of all the 3× 3 nilpotents.
For any given pair (a, b) ∈ Z

2, the completion equations, i.e.

ax+ by = m

(bu12 − au22)x+ (au21 − bu11)y = l

give a system of two linear Diophantine equations with unknowns x, y.
The following is well-known:

Proposition 2 The Diophantine equation ax+ by = c has an integer solution
iff gcd(a, b) divides c. If we denote a = u ·gcd(a, b), b = v ·gcd(a, b) and (x0, y0)
is a solution then the other solutions have the form (x0 + kv, y0 − ku), where k

is an arbitrary integer.

Remark. If c = w · gcd(a, b) the equation is equivalent to ux+ vy = w with
coprime u, v. Then a solution is given by reversing the Euclid’s algorithm for u
and v. If us+ vt = 1 for integers s, t then (sw, tw) is a solution for the initial

equation ax+ by = c (here w =
c

gcd(a, b)
).

Therefore, for possible solutions of each equation above (separately), it is
necessary that gcd(a, b) divides m and gcd(bu12 − au22, au21 − bu11) divides l.

The system has solutions if these two conditions are fulfilled and there are
common solutions.

Such a system may be written in a matrix form AX = C, i.e.

[

a b

bu12 − au22 au21 − bu11

] [

x

y

]

=

[

m

l

]

and may be solved by computing the Smith normal form of its matrix, in a way
that is similar to the use of the reduced row echelon form to solve a system of
linear equations over a field.

In the general n × n case, if U, V ∈ GLn(Z) are such that B = UAV is a
diagonal n × n matrix (bii is not zero for i not greater than some integer k,
and all the other entries are zero) then B (V −1X) = UC and denoting yi the
entries of V −1X and di those of D = UC, this leads to the system bii yi = di
for 1 ≤ i ≤ k, 0 yi = di for k < i ≤ n.

Finally, the system has a solution iff bii divides di for i ≤ k and di = 0
for i > k. If this condition is fulfilled, the solutions of the given system are
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V























d1

b11
...
dk

bkk
hk+1

...

hn























, where hk+1, ..., hn are arbitrary integers.
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