"Some matrix completions over integral domains" : corrections and addendum

Grigore Călugăreanu

September 14, 2021

Abstract

We correct a typo and an incorect remark (which are not essential in the paper), and develop over \mathbb{Z} the main result.

The main result in [1] is the following
Proposition 1 Let R be a (commutative) integral domain and let U be an arbitrary matrix in $\mathcal{M}_{2}(R)$. There is a nilpotent matrix $N \in \mathcal{M}_{3}(R)$ which has U as the northwest 2×2 corner, whenever there exist elements $a, b, x, y \in R$ such that $a x+b y=\operatorname{det}(U)-\operatorname{Tr}(U)^{2}$ and $b x u_{12}+a y u_{21}-a x u_{22}-b y u_{11}=\operatorname{Tr}(U) \operatorname{det}(U)$. Such a matrix exists if (e.g.) u_{12} or u_{21} is a unit.

Conversely, if N is a 3×3 nilpotent matrix which has U as the northwest 2×2 corner, the previous relations hold for $a=n_{13}, b=n_{23}, x=n_{31}$ and $y=n_{32}$.

The correction of a typo: in the proof, commenting the special case u_{12} is a unit, a completion is indicated, namely, $a=0, b=1, y=m, x=$ $\left(l+m u_{22}\right) u_{12}^{-1}$, and if u_{21} is a unit, $x=0, y=1, b=m, a=\left(l+m u_{22}\right) u_{21}^{-1}$.

In both formulas, u_{22} must be replaced by u_{11}, that is $x=\left(l+m u_{11}\right) u_{12}^{-1}$ and $a=\left(l+m u_{11}\right) u_{21}^{-1}$, respectively.

The correction of remark 1, p. 3: if $a=b=x=y=0$ then clearly $\operatorname{det}(U)=\operatorname{Tr}(U)=0$ (i.e., U is nilpotent) from the conditions in the Proposition 1.

However, the converse fails: if U is a 2×2 nilpotent, the completion with $a=b=x=y=0$ clearly gives a 3×3 nilpotent N, but this is not the only possible completion. For example, $\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 0\end{array}\right]^{3}=0_{3}$, and the nilpotent U is completed with $a=x=y=1, b=-1$.

Rephrasing, $a x+b y=0=b x u_{12}+a y u_{21}-a x u_{22}-b y u_{11}, u_{11}+u_{22}=0=$ $u_{11} u_{22}-u_{12} u_{21}$ do not necessarily imply $a=b=x=y=0$.

We can also obtain an index 2 nilpotent by completion of the same U :

$$
\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & -1 & 0 \\
1 & 1 & 0
\end{array}\right]^{2}=0_{3}
$$

Addendum. From now on we take $R=\mathbb{Z}$, the integers and continue to use the notations $m=\operatorname{det}(U)-\operatorname{Tr}(U)^{2}, l=\operatorname{Tr}(U) \operatorname{det}(U)$.

What we intend to discuss here in the generation of all the 3×3 nilpotents. For any given pair $(a, b) \in \mathbb{Z}^{2}$, the completion equations, i.e.

$$
\begin{array}{ccc}
a x+b y & = & m \\
\left(b u_{12}-a u_{22}\right) x+\left(a u_{21}-b u_{11}\right) y & = & l
\end{array}
$$

give a system of two linear Diophantine equations with unknowns x, y.
The following is well-known:
Proposition 2 The Diophantine equation $a x+b y=c$ has an integer solution iff $\operatorname{gcd}(a, b)$ divides c. If we denote $a=u \cdot \operatorname{gcd}(a, b), b=v \cdot \operatorname{gcd}(a, b)$ and $\left(x_{0}, y_{0}\right)$ is a solution then the other solutions have the form $\left(x_{0}+k v, y_{0}-k u\right)$, where k is an arbitrary integer.

Remark. If $c=w \cdot \operatorname{gcd}(a, b)$ the equation is equivalent to $u x+v y=w$ with coprime u, v. Then a solution is given by reversing the Euclid's algorithm for u and v. If $u s+v t=1$ for integers s, t then $(s w, t w)$ is a solution for the initial equation $a x+b y=c$ (here $\left.w=\frac{c}{\operatorname{gcd}(a, b)}\right)$.

Therefore, for possible solutions of each equation above (separately), it is necessary that $\operatorname{gcd}(a, b)$ divides m and $\operatorname{gcd}\left(b u_{12}-a u_{22}, a u_{21}-b u_{11}\right)$ divides l.

The system has solutions if these two conditions are fulfilled and there are common solutions.

Such a system may be written in a matrix form $A X=C$, i.e.

$$
\left[\begin{array}{cc}
a & b \\
b u_{12}-a u_{22} & a u_{21}-b u_{11}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
m \\
l
\end{array}\right]
$$

and may be solved by computing the Smith normal form of its matrix, in a way that is similar to the use of the reduced row echelon form to solve a system of linear equations over a field.

In the general $n \times n$ case, if $U, V \in G L_{n}(\mathbb{Z})$ are such that $B=U A V$ is a diagonal $n \times n$ matrix ($b_{i i}$ is not zero for i not greater than some integer k, and all the other entries are zero) then $B\left(V^{-1} X\right)=U C$ and denoting y_{i} the entries of $V^{-1} X$ and d_{i} those of $D=U C$, this leads to the system $b_{i i} y_{i}=d_{i}$ for $1 \leq i \leq k, 0 y_{i}=d_{i}$ for $k<i \leq n$.

Finally, the system has a solution iff $b_{i i}$ divides d_{i} for $i \leq k$ and $d_{i}=0$ for $i>k$. If this condition is fulfilled, the solutions of the given system are

References

[1] G. Călugăreanu Some matrix completions over integral domains. Linear Algebra and its Appl. (2016).

