"Some matrix completions over integral domains" : corrections and addendum

Grigore Călugăreanu

September 14, 2021

Abstract

We correct a typo and an incorect remark (which are not essential in the paper), and develop over \mathbb{Z} the main result.

The main result in [1] is the following

Proposition 1 Let R be a (commutative) integral domain and let U be an arbitrary matrix in $\mathcal{M}_2(R)$. There is a nilpotent matrix $N \in \mathcal{M}_3(R)$ which has U as the northwest 2×2 corner, whenever there exist elements $a, b, x, y \in R$ such that $ax+by = \det(U) - \operatorname{Tr}(U)^2$ and $bxu_{12} + ayu_{21} - axu_{22} - byu_{11} = \operatorname{Tr}(U) \det(U)$. Such a matrix exists if (e.g.) u_{12} or u_{21} is a unit.

Conversely, if N is a 3×3 nilpotent matrix which has U as the northwest 2×2 corner, the previous relations hold for $a = n_{13}, b = n_{23}, x = n_{31}$ and $y = n_{32}$.

The correction of a typo: in the proof, commenting the special case u_{12} is a unit, a completion is indicated, namely, a = 0, b = 1, y = m, x = $(l+mu_{22})u_{12}^{-1}$, and if u_{21} is a unit, $x = 0, y = 1, b = m, a = (l+mu_{22})u_{21}^{-1}$. In both formulas, u_{22} must be replaced by u_{11} , that is $x = (l+mu_{11})u_{12}^{-1}$.

and $a = (l + mu_{11})u_{21}^{-1}$, respectively.

The correction of remark 1, p. 3: if a = b = x = y = 0 then clearly det(U) = Tr(U) = 0 (i.e., U is nilpotent) from the conditions in the Proposition 1.

However, the converse fails: if U is a 2×2 nilpotent, the completion with a = b = x = y = 0 clearly gives a 3×3 nilpotent N, but this is not the only possible completed with a set $\begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 0 \end{bmatrix}^3 = 0_3$, and the nilpotent U is completed with a set $\begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 0 \end{bmatrix}^3$ U is completed with a = x = y = 1, b = -1.

Rephrasing, $ax + by = 0 = bxu_{12} + ayu_{21} - axu_{22} - byu_{11}, u_{11} + u_{22} = 0 = 0$ $u_{11}u_{22} - u_{12}u_{21}$ do not necessarily imply a = b = x = y = 0.

We can also obtain an index 2 nilpotent by completion of the same U:

$$\left[\begin{array}{rrrr} 1 & 1 & 0 \\ -1 & -1 & 0 \\ 1 & 1 & 0 \end{array} \right]^2 = 0_3$$

Addendum. From now on we take $R = \mathbb{Z}$, the integers and continue to use the notations $m = \det(U) - \operatorname{Tr}(U)^2$, $l = \operatorname{Tr}(U) \det(U)$.

What we intend to discuss here in the generation of all the 3×3 nilpotents. For any given pair $(a, b) \in \mathbb{Z}^2$, the completion equations, i.e.

$$ax + by = m (bu_{12} - au_{22})x + (au_{21} - bu_{11})y = l$$

give a system of two linear Diophantine equations with unknowns x, y. The following is well-known:

Proposition 2 The Diophantine equation ax + by = c has an integer solution iff gcd(a, b) divides c. If we denote $a = u \cdot gcd(a, b)$, $b = v \cdot gcd(a, b)$ and (x_0, y_0) is a solution then the other solutions have the form $(x_0 + kv, y_0 - ku)$, where k is an arbitrary integer.

Remark. If $c = w \cdot \gcd(a, b)$ the equation is equivalent to ux + vy = w with coprime u, v. Then a solution is given by reversing the Euclid's algorithm for u and v. If us + vt = 1 for integers s, t then (sw, tw) is a solution for the initial equation ax + by = c (here $w = \frac{c}{\gcd(a, b)}$).

Therefore, for possible solutions of each equation above (separately), it is necessary that gcd(a, b) divides m and $gcd(bu_{12} - au_{22}, au_{21} - bu_{11})$ divides l.

The system has solutions if these two conditions are fulfilled and there are common solutions.

Such a system may be written in a matrix form AX = C, i.e.

$$\left[\begin{array}{cc}a&b\\bu_{12}-au_{22}&au_{21}-bu_{11}\end{array}\right]\left[\begin{array}{c}x\\y\end{array}\right]=\left[\begin{array}{c}m\\l\end{array}\right]$$

and may be solved by computing the *Smith normal form* of its matrix, in a way that is similar to the use of the reduced row echelon form to solve a system of linear equations over a field.

In the general $n \times n$ case, if $U, V \in GL_n(\mathbb{Z})$ are such that B = UAV is a diagonal $n \times n$ matrix (b_{ii} is not zero for i not greater than some integer k, and all the other entries are zero) then $B(V^{-1}X) = UC$ and denoting y_i the entries of $V^{-1}X$ and d_i those of D = UC, this leads to the system $b_{ii} y_i = d_i$ for $1 \leq i \leq k$, $0 y_i = d_i$ for $k < i \leq n$.

Finally, the system has a solution iff b_{ii} divides d_i for $i \leq k$ and $d_i = 0$ for i > k. If this condition is fulfilled, the solutions of the given system are

$$V \begin{bmatrix} \frac{d_1}{b_{11}} \\ \dots \\ \frac{d_k}{b_{kk}} \\ h_{k+1} \\ \dots \\ h_n \end{bmatrix}, \text{ where } h_{k+1}, \dots, h_n \text{ are arbitrary integers.}$$

References

[1] G. Călugăreanu Some matrix completions over integral domains. Linear Algebra and its Appl. (2016).