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ON AN ENRICHED THEORY OF MODULES (II)

GRIGORE CALUGAREANU

Introduction. Stimulated by the excelent monography [4] the author of
the present paper works out the closed and monoidal closed part of the theory
of modules over a fixed monoid, a theory for which, in [5], MacLane only
worked out the monoidal part.

The reader needs only the first section from [3]—where the basic notions:
closed and monoidal monoids and the corresponding morphisms, left and right
modules over monoids, are defined, and the basic situations studied, — in order
to recover our main definitions.

From section two all the definitions and results followmg the corrolary.
2.7 are needed.

In this way, we shall start this second part of this paper with section
three. In what follows, we suppose that ¥ is a symmetric monoidal closed cate-
gory with equalizers.

3. The closed and monoidal closed structure of ;MV. Lemma 3.1. — The
morphism z, = (v, - C4p) : A = (RA), considered for a left R-module (A, a4, ¥4)
over V, factors through {RA}. Moreover, denoting by i,: 4 — {RA} the facton-
zation morphism, this is an isomorphism in V.

Proof. First, we have to check (3) (a4, 1) - Rig-24=(n1) - Liz -
Using (II, (3.1), (3.19), (3.22)] we have

(#,1) « LRa - 24 = (n(m), 1) - Lia-zg=1p-(m1) mlys can) =
=1 nlys - cap - 1@m) = mnly, - Cap - 1®m - @) = wnly, - mB1 - Carer -4).

The following commutative diagram

(ABR) 8R -3— ABRER) —S—+RORIOA DEL,REA A

- l a-’l ' /
8¢, peiroa)-12¥hroa 7 A

(R@A)RR —-——*R@(A@R)—-ﬂ

enables us to continue the equalities above
= ““(YA - 1®(Y4 + Car) - aRAR CAR®1) = “(”(TA ®(Y.4 ; éAR) - a) - C.m)
using again [II, (3,1)]. At the same time, we have
(g 1) + REg - 2, = n(Mir: craian) - 24®%) =n(Mha - @24 - cm)

Thus, the equality (3) is equivalent to the following



4 GR. CALUGAREANU

Mas - 0,®z0=7(vs > 1®(Ys * Cap) * Grag) OF to the one deri
apgfyiné’ =, “which 18 proved as follows erived. from this

n(M#a - %,®2,) = (24 1) - Lia - ag = (m(y,- Car)s 1) - LE, . o =
=p (Yo Capl) ag=2 wys - 1®(y4 - c4p)) = Ty, - 1®(y, - can) - a |
using [II, (3.1), (3.19), (3.22)]. Rag,

. e . ..—l
Now, let us prove that iz': {RA}%“(RA). e (IA4) 2 4 is a twosideq
inverse for i, that is, let us check the following two equalities (e, 1) 2=

=1, 2,11 - (&, 1) - equgy = equg,. We simply obtain the first as follows
(6, 1) “m(yq-cap) =T(ys - chr - 1®€) = (v, - e®1 - Cap) = w(ly - Cqp) =
=n(r,) =i,
As for the second, we first derive from [II, (7.4)] the following commutative
diagram '
1AZUAIR (R (1AIBR)

- (o 1
‘uAul R

R
K
(HlA)—-—mAL——*(l@R)(IA,wR;

Using %44 = (1, 1'4)- and the following commutative diagram (by naturality
of K .

- .
K
(14) —1A—(16R, AGR)
(1ia) (1,81

R
(I(IAJ——"SWAI—-H@R,(IA)@R)

: e uired
we have #gqr= (/z’,5,®1) - K. We now prove the second equality ¢4

above as follows
Ya 52" (e 1) - equpy = (v, - Cap - 14 ®L) - €q¥ra =
=(1,v4 " ¢4z + 44 ®1) - tparr - (6, 1) - €qUra =
=(Lys- ca 35" ®1) - (7" 5, ®1) - Kia - (6 1) el D o
= (R Ya-Car) - KM - (e, 1) - equp, = (IR Ya * Car) * (e®1,1) - Kra

_ R = —
= (e®1 . Ik Y Ya* Car) * (Crps Cra) * Hra - €1tz (m, 1).eunA’

-1 .

= (g ¢®1 - 15", 1) - (1, v,)- HRa- equpy = (cae -€®1 " Ir > -l)and lemma 3.1
= (1®¢ - 7&' - m, 1) - equp, = equy,, using also [IL (34)] v, the mor;blu'sg
LemMa 3.2. — For each left R-module (4, aq Ya) OV = thro#e

actors
Yra = MRa - Ry Ry - T(m - crR)® equra: R® {RA} — (R4) /i
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RA}. The umique factorization morphism t R .
g?—mgdule structure over V for {R Aji wryt RQ{RA} — (RA) provides a left

Proof. Using the V—functonahty of R4 and LR, the naturalit
a commutative diagram derived from [1I1, (4.4)] and (3) from :liel gr:;cﬁ{s
lemma we have

y R : -
(24, 1) + Ridr + M4 - ¢(rr), (R4) * T(m - crp) @equp, =

= (n,1) - L}, - Mﬁa C(RR), (R4) * (M - CrR) @equry,
which proves the existence of the requlred morphlsm Wpy-
Next, let us check that ({RA}, wg,) actually is a left R-module over V
that is, the commutativity of the following diagrams

RO{RA} =Bl gir A} ‘:: :‘ ’T{RA}—‘ﬂne«Roi:z:&A
“Ra ) R®{RA} R8RA}
(RA) %m A

By left composition with equg,, the first one is equivalent with yg, - e®1 =
= €qURg4 * l(RA) denotmg by YrRa = €QUgy O)RA, or, applymg x, Tt(yRA)
= (1 equgy) + f(ray- Using n(yr4) = (equ, 1) - Rix - n(m - cRR) and w(m- cgg) - e=
= jp (from proposition 1.10) it is sufficient to verify R%g - j, = jr)y But this
follows easily from [CC2], i.e., (jg 1) - LR4 = %ray applying ntand using
(111, (4.4)] for ([IIL, 6.4].

The commutativity of the second dJagram is equivalent with y,, - m®1 =
= Ypa * l®wu a. We first mentlon that agam from proposition 1.10 we have

B-m= Mg Rr - PXP - CRR = Mj RR * C(RR), (RR) - B®B, which implies, applying =,
(1, [3) . m(m) = (B, 1) - REg- p. Next, using the V-functoriality of R4 and
applying w, we derive an analogous of [CC3]

R

(RR) RER _  ARRXRRN
RA !
R
(1,RA )
(RANRAD » Rer
L(RA)

«(RAx:zAn(RA)(RAm..(__en.z—-’—uRRX(RAXRAm

Using all these, the proof is the following
wr(Ypa - MOL) = n(n(ygs) - M) = (1, T(Yra)) + w(m) =
= (1, (equra, 1)) - (L, Riz) - (1, B) - =(m) =
=(1, (equra, 1)) - (L, Rza) - (B 1) Rir- B =
= (1, (equra, 1) - (8, 1) « (RE= 1) ) - L{%, (ray - Rz - B =
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= (8,1) - (R&r 1) - ((equra, 1), 1) - L{EH z4y - RE, . B=
= (m (yrah 1) - L& 2a) - R2z- B =32 - (yra, 1) - R, . B=
=p- -;-.-(MﬁA . C(R;),(RA) - (M - crr) @yRA) =p- “(yRA . 1®;)RA)
= 1n(Yra * 1Qw r4 - a).

Lemma 33. — The construction descriqu n lemma 2.8. defines ;
metric monoidal closed category V with equalizers a bifunctor = M a syy,
x g!V — Vo. : .

=

: R@”X

Proof. If f: (4', ax) = (4, 2,) and g: (B, g) = (B, ap) are morph
of left R-modules over , then {f,g}: {AB} — {4'B} is the unique mogp:
of factorization through the equalizers

{aB}. Sta) __ e}

€y ©Quyg
1A B}_;;ﬁg}___,[A’ g’ 1

The functoriality is derived from the uniqueness. Thus, in order to provehtzi
existence of the factorization morphism on the above diagram we must che

(az, 1) - RE . (f,8) * equas = (ag, 1) - L4s - (f, &) - equqp. Using the follo-
wing commutative diagram '

(eoyas) —te) _ egyagy—Libl— (ga)ka)
B | 1911

RBA . g {l19)
{AB}—22— (AB) A _ . (eekaB) fxgt)

{fg) - (g4t
a| 1

) — RBA___ eigae) — B~ (midel
‘ , . RE, . equp

the first member of the required equality is ="(1»(f: 8)) '_(aﬁ’ :) difgi;m for £
But this is = (1, (f, g)) - (¢4 1) - L4 - equsp. Finally, 2 if; ?equired equal.lt);
(like the above one) leads us to the second member of over 1/, there # I

THEOREM 3.4. — For each left R-module (4, %4 YA}z e Tt Romod
natural isomorphism in MV, i,: A — {RA}, where {RA} ha dules
structure given by lemma 3.2. _ hism of left RO

Proof. We must show that i, actually is a morp S
over V, i.e., that the following diagram commutes.
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By left composition with equg, it is sufficient to check gy, = 1®i

. . ) ; -~ 4 =Yra " 1®1i,
We derive this from the following equivalent equalities :z A Y4 Cap =M%, .
. 24®2g, (1, Zg) rzy= (213: 1) - Lﬁu‘ - 24, this last' equality being checked ana-
logously, like the one in proposition 1.6. .

The npaturality (in ,MV!) of the family i =i A {RA} -reduces to
the naturality of the family z = z, which is readily checked. T

THEOREM 3.5. — ig: R — {RR} is an isomorphism of monoids from the
opposite monoid of R to the monoid {RR} of the R-endomorphisms of the left
R-module R over itself. o

0 Proof. Straightforward, using equalities from the proof of proposition
1.10.

Remark. It can be shown, in the usual subjacent way, that if ¥ preserves
equalizers and V - W is an epifunctor, then the left R-module (R, #, m) over
R is a projective object in MV. Analogously one could now define Quasi-
Frobenius monoids over V in the usual way. ,

— Let us point out the second bifunctor corresponding to the monoidal
structure of MV. We assume that.V, has coequalizers and, for a monoid
(R, e,n,m), that (4, y,) is a object in jMV and (B, 8p) is an object of MV,.
"« "We define the lensor product B@yA ds an object in ¥, namely

coequ ((8,®1,) - a5ha 1,®v,) : BO(R®A) — BRA).

This will be a quotient object of B®A. We shall denote by coequpy:
: BA = B®yA the canonic epimorphism to the coequalizer. a

PROPOSITION 3.6. In a monoidal category with coequalizers V, the above
construction defines a bifunclor ®g: MV X MV —V,. e

Proof. Evidently, ®g((B, 85), (4, v4) = B®z4. If f: (B, 85) — (B', 8z)
is a morphism in MV, and g: (4, y4) = (4’, ya) is a morphism in pMV then
f®rg: B®zA — B'®zA’ is the unique morphism of factorization through the
coequalizers

[

‘ Boa 189 . gga .

.‘ wequ&[ o lcoetuA
PRI e f@Rg 3 s o
B@RA"——f—_-*B@RA i
rh e R i ; I [ . .
The functioriality is derived from the uniqueness. In order to prove the exis-
tence of the factorization morphism on the above diagram we must chef:k
coequps - f @ g - (3,81,) - @5ks = cOCqupa - f ®g - 15@7,; . But this easily
follows using the following commutative diagram N _ )
B .{.. e ' .t " o - I'll' 3 ! ; B
S a9 o1 A
B@(ROA)——“-T"(BGRE_A%EB——,'BQA
6 . (1818g . 199

RS e - é1 , “' , -
_8'@_(R0A')$——3-1—-’(d@3)0A'__—XB:——48'@A%BORA_ SRR TR
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DEFINITION 3.1. 4 monoid (R, e, m) over V is called commutatiy, ifm.

In what follows we suppose the monoid (R,e,n,m) commutative Crr =m,
_ Lemma 3.7. If (Rem) is a commutative monoid over V gng (4
left R-module then oy :R — (A A) factors through {AA} Like in the foll(oA
mutattve diagram

! ,ad) s a
lmng com.

R——L(AA]

,A\ /un
3

Proof. a, being morphism of monoids over ¥V we have
Mia- a,@uq=o0, -m=cy," m'CRR=M§A c o oyt Cpp =
= M4 - C(aa), 44y * ¢4 @, Applying m we get (a4 1) - Lis oy =
= (ay, 1) Ria - a4

ProrosiTION 3.8. If (4, a,) and (B, ag) are left R-modules, there is a
morphism ys: R®{AB} — {AB} which gives {A B} a structure of left R-module
over V. B

Proof. We consider the morphism %45 = M 45 - az®@equp: RQ{4B}~(45)
From the previous lemma ay = equgy - %5, So that x,; factors through equy
using lemma 2.9. Hence a morphism y4 5, exists and makes the following diagram

commutative ’

RO{AB}—AB_.(Ap)

¥ag) Y-
(a8

Next, let us show that ({4 B}, v«m) actually is :
As usual we get equivalent C(f;{lditii)nYS( bj}r) left composition with eqlfl;g't n:;;)l;
%4 * €Ql = equyy - liup), %4p - M1 = %45 - 1@Y(4n) vy For the—— (eq'u,‘,, '
ing = and [II,(3.1)] we have m(x,5) - ¢ = (equyp, 1) - Lss* %5 ¢ = the nat¥
Lo -jp = (eQugp 1) - juam = (1, equyy) - juam, also using [CCIL €€
tality of § and the fact that B is a left R-module over V.
For the second, we have

a left R-module over V.

nn(%p - M@1) = w(n(x,z) - m) = (1, “(xAB)) - ‘m(m) = 125057

= (1, (equyp, 1)) (1, L3p)-(1; ap) -m(m) = (1, (equtsp 1))- (L, L#s)-(esl) 52
= (L (equy 1)) - (a5, 1) - (L85, 1) - L4E), um - LB5 " %2 -

= (g, 1) - (L%s, 1) - ((equzp 1), 1) - LEUZ 5 - L3s* % —

= (5(%e), 1) - LR uny - L - ag = - (5ans 1) - L22° %2

= . a)-
= n(M — 1 . B
P . ( 33 2 ¢B®x‘w) = P . n(xAB . 1®Y(AB}) — m(x“n 1®Y(4
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Remark..We must shovu{ that in the commutative case the left R-module

structures deflnegi on {RA}, in the lemma 3_.2 and in the previous proposition

are identical. Using m -AcRR = m and applying = to the definition of equpg,,,

one can show that MRy, - a, ® equrs = MR4 - Crrmpyray - # ® equgy, -that is,

XpA = YRA: :

THEOREM 3.9. Lemma 3.3 defines a bifunctor {—, —(} 1 RMVorx MV~ MV,

Proof. It only remains to prove that {f,g}: ({4B}, yus) = ({4'B},
Yupy) actually is a morphism of left R-modules over V. The commutativity
of the following diagram : ‘

Re .B}._Yfﬂﬂl_.{Aa
10 l(fs}
R.(A'ej—fi&ﬂ.{xs}

follows from the equivalent equality MZp - ap ® (f.8) - 1 ® equas = (f,g) N
- M5+ 2;®1-1®equyp, which is true using the following commutative diagram

B
ol @1 M
RO(AB) ———E2—(BE)8(AB) — 28— (aB)

(1.g9)8(f 1) 8 ((F
X 1, M -3 .
10119 iee)8(an) ——2B (48
{gHe SR, MEET ) _. i

: Y N
RAR) — B (Eeheae) 12.1a) ) ase) "

PrROPOSITION 3.10. If [V =V . W: MV — Ens and V' preserves equa-
lizers then the following diagram of functors is commutative

(.-t
R ¥ gty R
Hom R’
Ens

Proof. Straightforward from the remark following lemx?la 2.8.

PROPOSITION 3.11. For each left R-module (A, «4), the morphism x, :R—{44}
which appears in lemma 3.7 is a morphism of left R-modules. Further, the
Jamily § = Jiny) = %4 is natural in MV ) .

Proof. The following commutative diagram shows that x, is a morphism
of left R-modules ..

_ . : o Oequ

P | ROR b pofaa)— AP eip 0l R
S o A

m X[AA} TN Maa:

e
S S SR e s T
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The naturality of j follows from ,(1, f) = (f, 1)  og, true for 5
of left R-modules f:(4, as) = (4’ «4), €quas being monomorphisy, ""Piisn

PRroPOSITION 3.12. gV (iua)(14) =], ,
Proof. By left composition with equ,4 one can show
show at the subjacent level lthat V{zuaa)(1,) = ay. Finally,
to V(#a,r)(14) = 74®1, - I using also the equality z(44) = (1
- %42y, ® and. axiom [CCS]. S S
-. ProrosrrioN 3:13. For each left R-modules (A, a,), (B, w,) | .
there is a transformation _ a): (B, ‘wg) and (¢, a)
L = L{4=) o : {BC} — {{4AB}, {AC}} mnatural in MV

(Biap) (O

that" we pyy, to
one reduces tp
R Y (44) * Cagy ).

Proof. Let us, first, mention the following generalization of lemma 29
(@, 1) - RgA - Mic - equpc ®equyp = (o, 1) - Lﬁc : fwgc equpc @equyp. Hence
there is a morphism 37 4c: {BC}®{AB} — {AC} which closes the commutative
diagram - ° ' i , ;

=B
{BC}O[AB}__._'\L’\S...{AC}
@Bcﬂeq . equ,.

(BC)8(AB)——AC— (AC)

Using again n there is a morphism Lj¢: {BC}— ({4 B}, _{A C}) for which (equ4s, 1)"
- Lfc - equpc = (1, equuc) - Lac is true. If we want Ljc to give us by factort-
zation a morphism Lj¢: {BC} = {{AB}, {AC}} .we have to check the following

lit . AC} T4 ) AB} . EA . In doiug so,'we
equality (aucy, 1) - R(4E, sy - Lic = (owqamy, 1) « LYAB, (acy - L d {AC}, ie
may use the definitions of the left R-module structure on {4 B} an {4C4 C

ing B into
(1, equap) - «ap = (equys, 1) - L3p - ap and the analogous changlxﬁh 130, 0

Again, usi1_1g the V-functoriality of L4, composing to the right
and applying «, we get another analogous of [CC3]:

RC :
ac) 8 (icc)iech
S T ¢
Lge ‘ »
HABHACH " g
) &
' A - :
WACHAC) fABNACH) — & —— (IO ABNAC n (L1 CQﬂAG)g
. ‘g < wit ! ' ee
We shall prove the required equality composing to the leg:no functor 5)- Ind

(which still is a monomorphism, the functors (X, —) being Am
(L,(1; equ4c)) - (apuey, 1) - Rfﬁgi.c{m}: : Lfﬁ =':_
= (oucpl) - (1, equac), 1) - R{AS, = £56~
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= (2e, 1) - (Léc, 1) - ((equac, 1)} 1) - RED sy - L=
= (o6 1) - (LEc, 1) - R&ig; 5 - (1, equyc) - Lo =
= (4. 1) - (LE, 1) - Rgg;&w} ~ (equas, 1) - L3c - equge =
= (e 1) - (L&, 1) - (1, (equap, 1)) - RUD. sy - Lic - equpe =
= (a¢, (equas, 1)) - (1, L3c) - REp - equpe =
= (L, (equas, 1) - Lﬁcj + (ag, 1) - Lc - equpc =
= (ap, (equas, 1)) + (L5, 1) - LB, s - Lic - equpe=
= ((equan, 1) - L35 - a5, 1) - L{iZ} ey - Lhc - equpo =, .
= (stam, 1) (1 e29s0), ) - it o Lhe - capo =
= (awap, 1) - (1, (1, equac)) - LB ue - Loc=. "
= (1,(1, equac)) - (¢, 1) - LB, aey - Lc-

Thus, there is a morphism Ljc: {BC} — {{4B}, {4C}} in V,. The proof
of the naturality in MV of the corresponding family is left to the reader.

THEOREM 3.14. If V is a symmetric monoidal closed category with equali-
zers, (R,e,n,m) 1s a commutative monoid over V and the subjacency functor V .V ,—»
~Ens preserves equalizers, then MV, the category of the left R-modules over V,
s a closed calegory.

Proof. Using theorem 3.4, the remark following proposition 3.8, theorem
3.9, propositions 3.10, 3.11, 3.12, 3.13, all data for the closed structure of MV
are constructed, the ,,unit”’ object being obviously (R,s,m) as a R-module over
(R,e,n,m). Proposition 3.12 is axiom [CC5] for (MV. Hence, one has only to
verify the remaining axioms [CC1—4] for zMV. In what follows we shall prove,
for instance, axiom [CC2). We have to check the commutativity of the follo-

wing diagram

A
L
fAC)——AC— ((aa}fach
; g,
tagy A
{RAACH
By left ;:oﬁlp;)sition with equpgsc) this is reduced to the following' commuta-
tivity
R ’ EA
{AC}—ALfadifacy o
(jA) 1)

Zhg

(R{ACh
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A new composition with (1, equ,c) gives us the required proof:
(1, equac) - Zacy = (1, equisc) * ®(Y4c) * Cacy, &) =
= w(eqUac * Y{c} * cucyR) = #(%4c * C4c),R) = ‘"?(Mgc - ac®equ,,. - Cac),5) =
= n(MSc - o c) + €quac ®xg) = (ag, 1) - Ré4 - equ . =
= (ay 1) - Lic - equse = (ja 1) - (equuq 1) - Lic- equ,, =
= (jo 1) - (Lequyg) - Lic= (1, equye) - (ip 1) - Lic.

Remark. The astute reader has certainly noticed that we constantly use
the following fact: the functors (X, —):V, =V, having left adjoints, namely
— ®X:V, =V, preserve limits (equalizers) and monomorphisms.

— Let us return now to the monoidal structure of ,MV.

TEEOREM 3.15. For a commutative monoid (R, e, m), if the functor
R—:V, =V, prescrves coequalizers, proposition 3.6 defines a bifunctor
®r: RMV X MV — MV
‘ P{oof. We first ‘mention that, the basic monoid being commutative, if
(4, 8,) is a right R-module then (4, 8, - ¢cp,) is a left R-module. Hence, for

two left R-modules we shall define B®zA4 = coequ{{{ys - cpr) ®1, - a5ra,13@1,)
:B®(R®A) » B®A). In order to get a left R-module structure on B®zA we
prove that the morphism #;,: R®(B®4) = (R B)®4 YB_QI) B®A;m—B:B®RA

coequalizes the following pair

ro(@oIRoA)%Ls ro(perIaa)20YREEREY oo
18116,

The functor R® — preserving coequalizers, this will prove the existence of a
morphism yg, ps: R®(B®pA) = B®.A4 in V, which will provide the left R-mo-
dule structure on B®yzA. We shall avoid this verification which only uses defi-
nitions and coherence. So, our yg, p4 closes the following commutative diagrad

o1 coe
Repioa B2 . ggp SXRA 450 n
a Ve
18 coequ e
R8(BOA) BA »R8(BE Al

Next, we have to prove that (B ®r4 ually is a left R- odule,
i . . , actually 1s a l€ modul
that is, the commutativity of the,f((ﬂlow?ng YdﬁBgrA)ams

(R R)O(B@RA)-—Q——aR@(R@(BORA)

‘MXRBA
Re(BOA) ‘&u"’h(BORA) Y l :

RO(BERA)
' R8(BBA) (B9

gl Codhvge x ¢ h
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As for the first, we can check the equivalent one obtained by right co i-
tion with 1,®coequg,(this being epimorphism) y g MPost

Yr.84 - €®1 - 1®coequp, ="yg 54 - 1@coequy, - e®@1 = _ .
= coeqlg, - Yy®1 - a1.e®1 = coequ Y@ (e@N®1 - g1 =
= coequpy - [;®1 - a1 = coequy, : l4gp = lpgga + 1®coequy,.

As for the second, a right composition with 1zg r®coequy, gives us the requi-
red proof

YR, B4 - M@ - 1®coequy, = coequy, - yz@1 - a1 . m®1 =
= coequg, - Y5®1 - (1@Y5)®1 - a®1 - a1 = .
= coequg, + Yz®1 - a1 - 1®(y;®1) - 1Qa? . a =
= YR, B4 - 1®coequy, - 1®(y;®1) - 1®@a~1.a =
= YR B4 * 1®Yr 84 - 1®(1@coequy,) - @ = yr 54 + 1 @Y 54 - a'l®c<‘)e(‘1uu.';

Finally, one easily checks that, using notations from propbsition 3.6, f®Rg
actually is a morphism of left R-modules over V, i.e., the following diagram

commutes

R@(BORA)'—X_'B*BA-'BORA
(10, g lf&g :
Ro(Be, A1 SREA g

RA

Remark. If we suppose that V, is abelian, @ preserves cokernels in both
variables and we take cokernels instead of coequalizers we recover the similar
MacLane’s result.

— Moreover, the following result is true

TaEOREM 3.16. If V is a symmetric monoidal category with coequalizers,

(R, e, m) is a commutative monoid over V and R® — preserves coequalizers, then MV
1S a symmetric monoidal category. ) )
. Proof. Simple generalization of Mac.:[,e_m_e’s result. For instance, if (4, YA).
1s an object in ,MV, we have from the definition 1i9 Yo - m®l =y, - 1Q®v,a;
that is, v, coequalizes the pair ((m - cpe) ®1, - @xras 1z®Y). Thus, y, factors
through coequy,, giving one of our natural 1somorph1$n.15 1;: R®z4 — A.

We shall end our paper with the princip_al result which uses all the results
ebrained above idal closed cat Vo &

T 17. If V is a symmetric monoidal closed category, V, has equa-
lizers a:iE ?ﬁ?fagzgs, Ij"_ﬁreserveéy equalizers, (R, e, n, m) is a commutative monoid
over V and R® — preserves coequalizers, then oMV, the category of the left R-
-modules over V, is a symmetric monoidal closed category.
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- First we must find in ¥V, morphisms psac: {B®,4,C).

and pIrJ;\orzfthat this is a natural famlly of isomorphisms inRR MI}’-’P£5\:£:'C}},

we prove the existence of morphisms $p4c Which close commutatively the f‘;ﬂ)'.
0

wing diagram -
- {eoRA,c}-'-"-----E‘-‘f ------ -(B,{AC)

1,6qu,0)
«PB@RA(Z Pac

(B8A o.fc0epx" iaanc)_PBAC B(AC)
Because (B, -) breserves equalizers it will suffice to check
(1, (¢t 1)) - (1, RE) - paac - (c0equizy, 1) - equipge,c =
= (L{xe 1)) - (1, L4c) - pac - (coequpy 1) - equnppu.c

This verification needs the following facts: .
(i) denoting by X = B®yA4, and applying = to a convenient diagram which ex-

presses the V-functoriality of RC, one has (1, RE4) Lix= (R%ax 1) R{ﬁg’) (cc)-Rgx-
(i) from [III, (4.4)] applying =, we can find the equality '

(R%4 I)R&g)) (xx) * L¥c= (RX4, 1) L%’ﬁi‘)’ (0 * Lkc
(iii) the definition of coequp, gives by a double application of , the equality

(1, m(coequyy)) - m(yp-cpp) = (x4 1) -Lix - m(coeqip,)

(iv) we have (ay, 1) - R¥4- m(coequp,) = (1, m(coequg,)) - 7(Ys"Csr)

= n(m(coequy,) - vj-cpp) ; this follows also using the result of the forthe
Having this in mind the proof goes like this:

(1,(g, 1)) (1, RE4) - P pac- (coequypy, 1)-equxc =
= (L(ag, 1)) - (1, REy) - (m(coequpy),1) - Lkc - equxc.=
= (r{coequy,), 1) - (1,(x, 1)) - (R4, 1)- RIS, (cor- REx-equxe =
= (m(coequp,), 1)- (R4, 1) - R4G, &+ (¢, 1) + Réx - equxe = i)
= (n(coequy,), 1) - (R$4, 1) - RYS - (ag, 1) - Lxc - equxe =
= (nleoequs,), 1) + (1, (ay, 1)) - (R, 1) - LR, uey -+ Lo~ €92X°™ )
= (r{coequy), 1) - (REa, 1) - ((o.1), 1) - Lfim,uor Lo 30 ™
= (tts - eag), 1) - (1, m{coequs), 1)-Lfim, e Lo a3 ™
= (r(coequyy), 1) + (L4x, 1) - ((ae1),1) - L, w0 Lic « 49%¢ B
= (rleosqug,), 1) - (1 (g, 1) - (Lix, 1) - LB ey s o™ T
= (L{ag 1)) - (1, L4c) - (m(coequpy), 1) * Lic - eduxe =
= (L (a4 1)) « (1, L4c) - prac - (coequza 1) -equxc:

=

oming (Vu)



ON AN ENRICHED THEORY OF MODULES (Il 5
1

Now, we must show the existence of mor

close the diagram phiszms pssc which commutatively

[B@BA,C}_E.BAC.,{BI {ach ..

FBK lequ“'““”
fpfacy) -

and these will be the requlred isomorphisms. We have to check the following

equality (ag4cy ,1) - R(Ac) B PBac= (aB, ) LB {4cy * PBac Agam we need some
preliminary results : .

(v) from proposition 3.13 we take the equality
(Lequye) - ey = (equye 1) + Léc- o
(vi) the following equality holds -
(Léc ,1) - R(48, 5+ prac = (Lppac) - RE sea;
indeed, this follows applying = to axiom MCCS3, composing to the left with
¢(8o4,c), (cc) and applying =1
(vii) by a double application of = to the definition of yy = yg 54 wWe get
p-(coequgy, 1) « ay = (1,m(coequg,)) -
So the following ,,enriched dlagram chasmg proves the required equality
(1L,(1, eqge)) - (eucyd) - RUG, 5 - Poac = _
= (o(acp, 1)+ (1, equac),1) - R&?:i,a « Ppac = )
{40
= (06 1) - (L&, 1) - ((equac1),1) - R{4AS, » - Ppac =
(¢
= (&g 1) - (Léc 1) - R85 - (Lequac) - Poac=
= (ac1) - (L&, 1) - R{48,5 - Prac - (coequpy, 1) - equxc = (vi)
= (xg1) - (1, Dac) - Rc B®A * (coequu 1)« equyc =
= (ag,1) « (L, ppac) - (L, (coequpa, 1)) - REx ~ equxc =
= (1, paac) - (1,{coequpy)) - “(ax,1)- Lxc equxc = .
= (“X: 1) - ((coequgy ,1).1) + (L, ppac) - LxE” - equxe = MCC3
A .
= (ag,]) - ((coeqips 1),1)  (Bpacs 1) - Liax), o - L - equxe = (vii)
= (ag1) - ((1, m(coequpa),1) = Likcy, 4oy - Lic - equxc=.
= (ag,1) - L5 0 - (m(coequpa), 1) - Lkc - equxc =
= (op,1) --'Lg, (4c) + Prac - (coequ s ,1) - equxc=
‘ , - . ‘ B ' =
= (ap,1) Lg,(,(c)n' (1,€quac) * PBac = (g, 1) - (1'(1'«11140)) « LB, (4c) * PBac=
= (1,(1, equyc)) - (251) L3, (4cy * Psac
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have, for each three left R-modules (4, a,, v,), (B, ay, ’
We now have (B® A,C} — (B{AC}}. B Yp) (C, %Yo,

a morphism Ppsc* h . A -
Analogously, we can determine a family of morphisms PBac which clge

the commutative diagrams

P
3,0} BAC /B8,AC)

¥ f {coequy 1}
X (yequ,.) P"
(BACH——AE (B (ac) —BAL(BBAL)

and next, a family ppic which close the commutative triangle

~4
P
BAAY—2E (30 gy
5 €auxc
AL oA

Finally, the following three facts must be checked .
(a) psac and ppac actually are morphisms of left R-modules over V;

(b) psac and pzac are mutually inverse;
(c) the family p = pg,c is natural in ZMV.

As for (a), we show for instance that pg,; actually, is a morphism of left
R-modules over V. The commutativity of the diagram

RQ {BQRA Q ——b{xm————qau,-a ALY

AL l lf BAC
Re(B Jach—SBJACH , (@ ACH}

reduces by left composition with equg, (ac) to

M g?{ﬂ . “(AC}@;BAC = }BAC . ‘YkBe g4:€) 9%, applying =, to

(Bzac 1) - Lise), s * aacy = (1, P4c) + %(B@ g4, ¢ €QuAlity W

by left composition with (1,(1,equ,c)) by a new ,enriched diagram ©
For (b) we choose p.-p—* = 1; indeed we show that

hich one can verify
hasing -

(1, equac) - equs, (ucy * Paac - Prdc = (1, equiac) - €du Mc)

We have _ L
(1, equyc) - equp, (4cy - Paac + Prac = (1, equac) - Poac’ pf,{c =

= Prac - (coequpy, 1) - equyc - prac = P sac (CORQUBA 1) - »
= psac - Prac - (1,equag) - equp, (acy = (1, equac). €192

‘l a—
BACT

[7{2X
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For (c) we choose the naturality <;f

. . ;in A' ' 3 - o H .—
mutativity of the following diagram Poac 1n (A, @y ¥a), that is, the com

[ - P ’
(8O A0 —BC g gy
ol o
adF B4 ey
Again, we prove an equivalent equality sY

(1, equac) - equg, gacy - Paac - {1®Rf.1}.=~(1,equ,pc) - Paacc - {1®pf1} =
) = Poac(coquar, 1) - equagpurc (1@pfil}= .
= powc: (c0equpe, 1) - (1@pf1) - equyc = . ~ .15
= Paac + (18f,1) - (coequpy, 1) - equyc = (L(£.1)) ~ poac - (coequpy, 1) - equyc=
= (L(£1)) : (1, equac) - equs, (uc) “ Poac = ' SR S
= (1, equac) - (L{f1}) - equs, ac) - Poac =
= (1, equurc) - equp, wcy + {L{f, 1} - Paac

In this way all the symmetric monoidal closed structure for MV is establis-
hed. One can complete the proof of our theorem verifying axioms [MCC2),
[MCC3], [MCC3'] and [MCCA4]. C R

(Received July 6, 1978)
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ASUPRA UNEI TEORII IMBOGATITE A MODULELOR (I1)
L "(Rezumat) T

i i i « bileste
Utilizind nofiunile preliminare studiate in partea in}iia a acelulasi art‘tcol, autorn! stabiles
Tezultatele Pl’inCipat.lje priv?toa.re la partea inchis3 gi monoidal inchisi a teonel. modlﬂ:lr?r peste. c;:‘l
monoid fixat, rezultate care conduc in final la teorema: 'dacﬁ .Z este o categorie sime : ::ixono;s al
inchisy, categoria subiacentd V, are egalizatori si coegalizatori, R este un monpxd comu t:n c‘; P ste
Y, functorul de subiacentd V piistreazi egalizatori i R@ — pistreazdi coegalizatori, a ca
goria modulelor RMYV este simetric monoidal inchisi. o o .
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