STUDIA UNIV. BABES—BOLYAL, MATHEMATICA, XXIV. 2, 1979

ON AN ENRICHED THEORY OF MODULES (1)

GRIGORE CALUGAREANU

0. Introduetion. Thi i .
EilenbergKelly's asmgﬁzpe;w%?; . elrlltlrelg' t\};e terminology from the
monography will also be used. Therefore pig [d]. s pults from this
we shall denote by [III, 2.4] (square Dokt (gl er to simplify the references,
or corlollary) 2.4. from the chapter III of e[3)] ¢ theorem {lemma, proposition

n the third chapter of the - ' ) .
Al{gebra [4], the authI:)r is bouhnde\:,ldé}lr{ 11;) vg'lrnl\rfl:tgianioI:lgiZa?acgirecawgoncfl
category with a multiplicatio i ot gory Z (2
I_/o O abelian categor;y andngh :%c}}ﬁﬁc:g?% rfethnc;;mI//ely eIr;ou_gh conditions :
right exact in cach argument separately. In su(.:h0 oy g ditive and
he defines the notion of V-algebra (in the .present aaecitlf'gory _(ca]le'd fensored)
a monoidal monoid over V) in a natural way (suchispt}:‘ _lsdnotlon will be called
t[l]), showing that V-algebras also form a symmetriclsrifon(;tilsall)ycieegzrirb gh:
fégxs-orinlt):glr:;gz’f' tggng)—f;ﬁ:r;as being essentially determined by the , middle

Further on, for a fixed V-algebra R, he defines the notion of left R-module
laol:;iintgh:eifcr{/rr;assgo&il;)gregoct;cgz (c))rf msc:)rli)gshm. ’.[;he resu}ts obtained are the fol-
tative V-algebra R, and, if V isg a ze’:nsored cif:gc?rg)?rgn?i Iren g.dIl’l}:is ggf'; at]io?mu_
tor F:V,— oMV with F(A) = R® A i djoint < forgetfull functor
2l 0 VR' A is an adjoint to the forgetfull functor

ceM Y = Vo, both functors are additive, G is exact and F is right exact.
paper works out the closed and moncider dlosed part of the theory of modules
( _ al closed part of the theory of modules
over a fixed monoid, theory, which for MacLane only worked out the monoidal
part. Secondly, the author elaborates this theory in considerably weaker assum-
ptions, assumptions present in almost all concrete categories (the abelianity
condition evidently being not of this kind).

In the first section, the basic notions: closed and monoidal monoids and
the corresponding morphisms, left and right R-modules over a fixed closed (mono-
idal) monoid R, are defined, and the basic situations: in a monoidal closed
category, closed and monoidal monoids may be identified, etc., are studied.

In the second section we successively prove the “enriched” versions of the
following classical results : every ring can be viewed as a category with a single
object, the category of modules can be identified with a suitable category of fun-
ctors from the category with a single object mentioned above, the category of
modules inherits properties, such as completeness, fron the category 4b. Assum-
ing. that the basic category V, has equalizers, the monoid of the biendomor-

phisms is constructed and the classical results about it, proved.
ove several results that are leading us

In the third and final section we pr . ‘ ]
to the following result: if V is a symmetric monoidal closed category with equali-
zers and the functor of subjacency V' preserves equalizers, then the category
MV of the left modules over a commutative monoid R, is closed.
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: ] h more weaker conditions, the results of Ma
~ recovering , 11 muc S cLan
After noigde’ll structure of MV, we prove our principal result: ;¢ §
o symmetric monoidal closed category, Vo has ;qualzzer 5 I‘é"‘d coequalizers, R 3 a
’2; nutative monoid over V, V preserves equaiizcrs an ® — preserves Coeque
;'oz,grs then MV is a symmetric monoidal closcd category.
12618,

concerning the mo

. . :FINITION 1.1. Let V be a closed
otions and results. DEFINITION Y ed category,
A closlc‘dB;Sol:«:o?d (R, e, n) over V copsists of the following data: ap object?g
in ¥, and two morphisms ¢: I —R, #»: R— (RR) in V. These data are t,
satisfy the following axioms:

R—T— R AN

cM1 (R(RR)
Lﬁg /(n.Y)
(RR) — B (RRYRR)
Rx—B— Re—&

CM2 le’)\ ni A? arc commutative diagrams.
(RR)

DermnitioN 1.2. If (R, ¢, n) and (R, ¢/, n') are two closed monoids over
V,amorphismf: (R, e, n) — (R’, ¢, #') of closed monoids is a morphism f: R — R’
in ¥, which satisfies the following axioms :

R-L_,B
MCM1 'R l A

R-"—’(RR)\M)
MCM2 fl ) are commutative diagrams.
’é. . SRR t.1)
P r. A . . . d
MOnoid,ROPOSITIOI\ 1.1. For each, object A from V,, ((AA), 74 L4 4) 15 @ clos¢

V.Proof. Straightforward from axioms [CC1—3] for the closed structure

We shall denote by MonV ¢

. v
and of the morphisms he category of the closed monoids oVer =

of closed monoids.

— Let (R: ¢, n) be a

DEFINITION 13. An .
oy (R, e, n) — ((AA), jm Lﬁ Ob]ect A

. - . m
IV, together with .a morphis
over V.,

le
a) of closed monoids is called a closed left R-mod#
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DEerFINITION 1.4. If (4, «,) and (B '
0 (A ) e (B g i morﬁz . (B, «p) are two left R-modules over V,

AL . sm of closed left R- if 04— B
morphism in V', which satisfies the gxiom eft R-modules if 6: A— B is a

RE‘A..(AA)
CRI1 o ne)
®,1)

(BB=4 (agy
We shall denote byk MV the category of the closed left R-modules with
the morphisms of closed left R-modules.
ProrosiTiION 1.2. R admits a canonic stru
over V.

Proof. Obviously, n: (R, ¢, n) —((RR), jg, LR.) is a morphism of closed
monoids.

cture of closed left R-module

ProrosrrioN 1.3. Each object A in Vo has a canonic structure of (AA)-
module, over the closed monoid defined in proposition 1.1.

Proof. The identity of (4A4) gives the required structure.
— Let V be a monoidal category.
DEFINITION 1.5. (Bénabou) A monoidal monoid (R, e, m) over V

consists of the following data: an object R in V, and two morphisms ¢: I — R,
m: R® R— R in V,. These data are to satisfy the following axioms

(ReR)eR —IBE_, ReiRem)

} met ' fiem
M ROR ,R&R

Re| 122 ror<®l oR .
MM2 '\F\‘ml . are commutative diagrams.
‘R’a.

‘e, m two monoidal monoids

DrrinitioN 1.6. If (R, ¢, m) and ({3 ) €5 m') are onolta, >

over VL almorj:hism f: (R, e, m)— (R ¢, m) of monoidal monoids ib adm&fe
phism_}‘: R — R’ in V, which satisfies the axiom MMM]1 = MCM]1 an

axiom
Rer-Dp
MMM2 for | ) I
R.onJn__.R.

] AR d ! monoid over K for each
Proposirion 1.4. ((A4), ja Maa) 15 a monoiad

object A of V.. )
Proof. Obvious by axioms [V

C1'], [VC2'] and [VC3] for the special case
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mMonV the category
We shall denoﬁfsnlg Omeonoidal monoids.

of the monoidal monoids over
V and of the morp (\IacLane) — If V is a symmetric monoidg] categor),

PropositioN 1.5

ther S%Vis rgg 12)/.[4] for the proof of this result.
€

7. Let ¥ be a symmetric monoidal category. An anjp,,
DEFINITION 1. .R' ¢ _;n') of monotdal monoids is a morphism f: Rap
phism f: ('51,1 e, 1%)5;;5( e axiom AMM1 = MMM1 = MCM1 and the axiom
in V, which sa :
m e ReRD.g ReR - T~
cml ) (@t
3 t
MM2 ReR o or o O
4 fot l RRJ ,
ReR-M.5y LS

ditions being equivalent by the naturality of the isomorphisms
these con

P 1ox 1.6. If (R, e, m) is a monoidal monoid over V., then (R, ¢, m. ey
roposITION 1.6. If (R, ¢, .

] wonoidal monoid over V. . N

" als‘}’:'lo;} The commutativity of the following diagrams

- Q > Re(ReR)
co‘\ VM
ReRI6R % Re(RaR) Rol- B2 ,pen«el_ pR
mel| Srolpor) 21— iror0r’ l“’"‘ Ic
ReR_  liom me| o ReR Rel
e\Rim ReR"

N,

follows by coherence, natur
and MM2 for the monoida

Derrxition 1.8. If (R, e, m)
monoid defined above will be ca

Obviously we then have

CoroLLarY 1.7, fi(R, e, m) —(

monoids iff f is q morplism
or iff fis a morphism of
of (R, ¢, '),

As for the follow;

category V. We shall mak

Tasc V(4

Prorosrrion 18. If (R, e, n)

is a monoidgl
over V, then (R

Jrom the opposite monoid of (R, e, M) i1 monoid
monoidal monoids from (R, e, m) to the oppos

ng, we shall consider a (§ymmetric)
e full use of the bijections

. ; 01da
. Lonversely, if (R, e, m) is a mom
1 a closed monoid over V

F& !c

id'g 1 R ‘_l@i.
kY
N Ve

. axioms MM!
ality of the isomorphisis ¢ and by axioms
1 monoid (R, ¢, m).

idal
. . ., 7 the mouoid
is a monoidal mouoid over ¥, the

lled the opposite monoid of (R, e, M)-

idal
n of monoid?

. : 1S}
R', ¢, m') is an antimorplis t0 (R, €™

monoidal closed

® B, C) — V(4(BC)). —r ()

. ) y e, TRRR .
1s a closed monoid over V then (R’. ' ! mo-ﬂ‘”d
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Proof. We shall show that
I—f—R IoR 28100,
(a) R l,, implies R lﬂ“(n)
(RR) N ﬁ

wre  being a bijection, the commutativity of the ri
to mypp(lr) = Tipg (n71(n) - e ® 1). In proving the |
equalities from [chap. IT]. Indeed

ght triangle is equivalent
ast equality we shall use

n(n=(n) e ® 1)BH) = n(m=l(n) ce) =m .o = j{IN = w(le).

Next, we have to show that

r—R g ol -182,ReR
(h) nl /é implies R 1?" &)
(RRY R

Indeed, w(z='(n) - 1® )N = (¢, 1) « n(m=Yn)) = (¢, 1) - 1 = i = =n(rg).

Similarly,
(FeRIOR —9—ReReR)
R--L—(RR) N o PETY Jm Iy
(c) n RRRY  implies ROR.  FeR
! & ) TN Ay
RRIFRYRRIRR) P

In this case, we shall prove that ng g rrTrerrr applied ;co the right diagram is
commutative. We shall use [(3.22)] in the following form

R(RR)Mw—Q@RR
il o
RRIRR) L2l —tRiprp
Indeed, n(r(r=i(n) - 1 ® =~'(#) - @))@aoy = p - ®(w7(n) - 1 @ =~} ("))emy =
— - (i), 1) - nOm = (1, 1) - Lig = (L) - #lO0 =
— (- 7 ()] = (m(n=2(n) - w0 O = w{n(xi(n) - 7Hr) @ 1)),

p p i ’ us
Slllll ar ) e e

19)) = j
(a’) n(m) - et®M = x(m - e® 1) = =(la) = I

(®) (6 1) - m(m) @M = x(m - ¢ ® 1) = wlrg) " = g
() (1, 7(m)) - w(m)(E0) = n(x(m) - m)1N = mr(m - m @ 1) =
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—ar(m - 1@ m Q)19 = p - a(m - 1@ m)EN =12 - (m, 1) - n(m)sz, -
= (x(m), 1) - Lzr - =(m).

By a simple application of [( 1)] we obtain

3.
Proposrriox 1.9. Iff: (R, ¢, 1f) — (R,’, ¢, n') is a morphism of closed mongig
over V then f: (R, €, ==(1)) — (R, ¢/, ==}(n')) is @ morphism of monoidal mono; is
oper V and conversely. -

“According to these two last propositions, in a (symmetric) monoidal closeq
category ¥V, we shall identify closed and monoidal monoids, speaking Toughly
of monoids over V. In doing so, (R, ¢, %, m) will denote a monoid over V such
that n(m) = n. Similarly, we shall use morphisms and antimorphisms of mouoids,

DeriniTION 19. (MacLane) — An object A in V, together with g
morphism y,: R® 4 —+ 4 in V, is called a monoidal left R-module over V if

the following diagrams are commutative

(ReR)eA —L—-Re(RA)
IOA-\@L‘RM mell Iva
A\ [ ReA ReA
N NG

Remark. A monoidal left R-module may also be defined as an object 4

in V, together with a morphism e, : (R, ¢, m) — ((44), 74, M44) of monoidal

:ia;(énoi%s (using proposition 1.4). One simply gets the above definition apply-
n-l

. DEFINITION 1,.10 (MacLane) — A morphism 0: (4 )_,(B -
IIS, Czlxl;(eid a morphism of monoidal left R-modules if fP: A — B.i(s :;.Yr;lorphism in
[}

Roa-SA_,p

o

ReB¥B.g
1S a2 commutative diagram.
One i : ..
monoidal lcee;fc1 ?.Sx;gdsutiow (in a similar way to the last two propositions), that
be identified with th €S Oover a symmetric monoidal closed category X cat
use only the notion §f1°sfd ones. According to this, in what follows, W€ shall
for monoids, by o eft R-module and morphism of left R-modules. 2
we shall denote by, REI’I}A'E \eVe shall denpte a left R-module with a4 = (Y4l
Let 1% be a Corresp()ndlng category. .

: — Sym H . .
monoid over V. ymmetric monoida] closed category and (R, e, #, m) a fixed
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DermNITION 1.11. (MacLane)

morphism 3, : A® R—~A4inV

diagrams are commutative

¢ An object 4 in V together with a
o 1s called a 7ight R-module ove;)' YV if the following

. (AeRIR —9—310(ReR)
Ag) 82, nep 5,01 o
A B AgR AdR
,ll N,

' Remark. A right R-modple over ¥V may also be defined as an object A
in V? togj_ther with an antimorphism of monoids B, : (R, e, #, m) — ((44),
Ja» Liaa, M44). In proving that these two definitions are equivalent one has

to make use of the following natural isomorphisms sg,,: (R(A4))— (4(R4))
which exist, the V-functor L4: ¥ — V being a self V-adjoint to the left.

DeriNiTioN 1.12 (MacLane) — A morphism =:(d4, 8,) — (B, 35)
is called a morphism of right R-modules if ©: A — B is a morphism in ¥, making
commutative the following diagram

AeR-2A.p
4

eon—§-9-9

In a similar manner, =: (4, B,4) — (B, Bp) isa morphism of right R-modules
if the following diagram commutes

R -[:’t‘——dAA) )

pB, (1.3

(g8) L2 (aB)

We shall denote this category with MVpg. '
Proposrrion 1.10. — R admils a canowic structure of right R-module
over V.
_Proof. We have to verify that Br = w(n=1(n) - ?RR) :.(R, e, n, ﬂ:l) - ((Rdlie):
jg» LRg, M3g) actually is an antimorphism of monoids, i.e. the following dia.

grams are commutative

R TimerR) RR) [!c[?i R

AN
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1o <=1, the first is equivalent to l.R =m-Cr @ 1l=m- -1Re.
whichUi:lgi\lz o (R, ¢, m) by o's naturality and coherence. As for the Seco;fék
using [MC6] we have Cgg * CRR = 1 and so V\;e have to check' B-wi(n).c. o
S LEy @ or B xe) = lee) B teng (SN dn the
application of = we get CM 1 'for . From proposition 1.8 this is equivalent
to MM1 for =-1(p). But this is true by proposition 1.6. ,

_ Let (R, ¢, 7, m') be a monoid over V and f : R'—R a morphism
of monoids over V. If (4, a,) is 2 left R-module then using o, - /. [ induces on
4 a structure of left R'-module. (4, a4 - f) 18 called the R’-ification of A. In
this way, a morphism f: R’ — R of monoids over ¥ induces (details are straight-
forward) a covariant faithful functor f: MV — mMYV (identical on morphisms).
Now, if f: R — R is an antimorphism of n}onmds over V, it induces a covariant
faithful functor MV — MVg. The identity l,: (R, e, m) =~ (R, e,m - cpp) is
a canonic antimorphism from the_mon01d (R, e, m) to its opposite. This anti-
morphism induces two category equivalences gtV — M Veand xMV — MV o,
equivalences which permit, in a symumetric monoidal closed category V, the

well-known identifications. o .
One can now define and recover the basic situations for bimodules. Details

are now straightforward.
9. »Enriched” versions of classieal results. Let V be a monoidal closed
category and (R, ¢, #, m) a fixed monoid over V.

-—
=

" PIISOPOSITION 2.1. The following data form a calegory [R] with a single
obgect K

_ @) [R)R, R) = VoI, R); (ii) for each 7y, 7, € [R](R, R) the “composition”
1S 1 xrp=m" n®7rg - il=m -7 ® 7, - i I — R; (ili) the morphism
e: 1 — R ts "the identity” in [R](R, K).

Proof. The associativity of the composition (ry *7y) % 7y = r * (F2* rs)
can be deduced from the following diagram (rixra) % 7a v e

J rfol/"»'@’”@f (B2 srerier Melper
I
(——le] la
: ) ORRR R
11N g 8201 S
(la) Re(ReR) LD ReR

3

l%i’()eidr(e(§025 n:;’mén}lte by [MC2, MC5], naturality of a and MMl for the

1, one eas'i ’ h. sing 7; = I, and the naturality of the isomorphisms 7 an

, Usinl yt }f ecks that e actually is an identity.

functor Vg.V 1s result and the well-known representation of the subjacency
: ¥ — Ens given by [I, 2.1] one gets

Coro r . .
object R - LLARY 2.2, The following data form a category [R]) with a single

i R ' = 11 .o g
’_’1:1'(2)=[V]1'}§§’V§—)1_ V(R) Eﬂ(“) Sfor each 7y, 7y € V(R) Mihe composm‘m ' ’3
in [RY(R, R). & (1) * Vig' (r); (iti) the clement Vig' (e) is "the identity

The categories [R] and [R)' are isomorphic.
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ProrosITION 2.3. The Jollowing data Sform a . )
ROT ! LOWLN a V-category {R)} : b :
only zR ; (11?[ {R;{(R, 5) )—- R, object in V;?; (i) a mo—rplzisfn y]R{ : } Jl{)R(i(JR {113_\,})
namety €.l —>I; (1V) a morphi : > oy
wamely m:R@ K — k. 1" Min: {R}(R, R) ® {R}(R, R) = {R}R R)
axiomzs). roof. Axioms of V-category are easily seen to -'c?i.ncide with the monoid
More important for what follows is now

THEOREM 2.4. There is a canonic identification between t ‘
) 2 e calegory MV
;f Ze{t R-m;dzgzes ;jnd tmor{:lnsms of left R-modules and the categorygofythka V-
unctors an ¢ V-natural transformations the V- (a:
V-category over itself). f from the V-category {R} to V (as

Proof. A V-functor T:{R}—V consists of a function obj {R} — obiV’
that is, an object T(R) = 4 in V, and a morphism TRR:{R}(IJQ,{R)}—» (Alil—)
that is, Tpp = a,: R—(4dA) a morphism in ¥, such that

R(|¢R-IIL~R

* %’(AN Op B0 k‘A
¢ /ﬁ May

i aelan—24 148 4)

are commutative. But this proves that a,: (R, e, m) — ((A4), j,, Mi4) is a
morphism of monoids. The rest of this proof goes similarly.

COROLLARY 2.5. There is a canonic identification between the category
MVyg of the right R-modules and the morphisms of right R-modules and the cale-
gory of the V-functors and the V-natural transformations from the V-category
{R*} to V. '

— Before giving the next result, we shall introduce here an obvious fung-
tor of subjacency W: gMV — V, defined by W(4, a,) = A, W(f) =f W is
obviously a faithful functor.

PropostTioN 2.6. If V, is complete, so is RMV.
Proof. This result can be derived from a more general one from [2].

We also derive

CoroLLary 2.7. The functor W reflects monomorphisms, epimorphisms and

limats. - .
. . : ; followed : conditions

Remark. At this point two directions could also be
on V in which some p?operties of V, are inherited by MV ; the second, the
construction of a left adjoint for the funcpor W, or,. the'c.onstrucuon of the
“free” left R-module over an arbitrary object of ¥, Satistactory results can

be found in [4].

In what follows, we supp
gory and that V, has equalizers.

ose that V is a symmetric monoidal closed cate-

3 — Mathematica 2/1979 -
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Levya 2.8. Let (A, a4 v4) and (B, ay va) be two. lefi R-modules.
We have :
. ‘ n
equ ((lre., Ys) ° HEs (v, 14) = equ((xp, Lam) - Rpa, (04, liap) L:,'B)

Proof. First, since o, = n(y,), an easy applicatioxz lof [IT, (3.22)] shows
that (v, 1p) = prin- (@4 Lam) . L4p. We show that pras '.(%» lus) - RE,
=(lre4, Yn) .H%, and this will prove our lemma modulo the isomorphism Pray.

From [p. 545] we already have the following commutative diagram

R ReB
(AB)——BA______- ,(BReB).(4.R2E)

R
Hag g

. P
(ReA.ReB)~ -RARB. .. (R(x Reg)

Further, the following diagram commutes by the naturality of R and p-!

R .

HaB

gReb (U 1)
(aB) —BA.(BReB)(ARE) -BR—(R(AR®B) ——(ReARSE)
RAReB

RSA ] 0.0.8g) J 00.55) l 0.5g)

-1

1
088010 (5 RepNag) “BR . (R(ag) ~RAB—(REAB)
C{TIR

(BBXAB)

using for the bottom triangle [II, (3.4)]. But the exterior is just the required

equality.
We shall denote by {4 B} and call the objcct of the morphisms of R-modules

between (A, oy, v,) and (B, ag, v5), the object defined by the previous lemma.
 Remark. If V preserves equalizers, and f V({4 B}), one has for the
first member in lemma 3.1

Volta 1)(/) = Vollzea, va)(V (HER)(f) = Vol(lrea, Y5)(1x ®S)
which is the definition of the morphism of monoidal left R-modules. S

using the second member, one finds the definition of the morphism O

left R-modules. )
Hence, if V preserves equalizers, V({AB}) = MV ((4, as), (B, ®8))-.
' — We then have a subobject (in Vo){ {4 %3)} of (AB). The corresponding:

monomorphism will be denoted by equ,,: {4 B} — (4B).

Lexma 2.9. We have (ag, 145) - RE, - M2, equpy ® equ,“;
- Lis - M2, . : B
48+ Myup - eqQugy @ equyy, d.e., Mg equgy ® equ,g- factors throug

imilarly,
£ closed

= (aA, 1(AB)) ‘

» {AB}:
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Froof. mac. Shall use, dmong others, the following five facts: the V-func-

toriality of R®:V® — ¥, that 1s, the commutativity of

: 8
(AB)@(BB)L(BB)WQ—”AH.,(AQ
e

8 .8 Mm%
RBAQRGB JRSA
(G
(BaBa) wee (eeka
(6BXaE)

the V-functoriality of L4:V — V, that is, the commutativity of

mMB
{BB&XaB) '_L‘(AB)

‘r:am;él; s
‘(AB!ABf)e(AA)MAB»ﬁWAA)M
the naturality of A/, that is, the commutativity of. the next diagrams
AB) , B9
(ABAENGA A)AG) _ﬁ&\).@_.m,ug, " (88)ABI0(BE)EE) —BHAR _goeyagy
e B o) 'steg! | | (eg:!
(ABXAemmsn-—'f?JBAH_—__. ! Mo
(Riad iBsKABYe (REE) —RIAE (R (B)

and the commutativity of the following diagram, derived from [III, (4.4)]

B .., 8
_Rpa®lBB ., (eB)aB)e(BBIBE)

(AB) ¢ (8B} s
Mea)(a8)

((BB)(AED

c v ,
o . (AB)
(aB)(E8) M4 g

L A oR 8
(66} (AB) —BE—BB—» (AB)AB) o (EB)(AS)
(ag 1) - Rgd < M5By - equpg ® equgp =

Using all these, we have
. RE, @ REs - cisman - ©Quss @ €QUas =

BB,
= (ap 1) M35, 5

= MZin - 1® (2

(05, 1) - M{BBam -

1) - Ras® Ris - equp ® €qUpp * (48}, (88) =

: + C(48),{BB} =
‘R34 ® L3s* equfqa @ equpgg * C(48).( i
equis ® €qQUpg * C(48), (88} =

. A’ B | e 8) °
= (ap, 1) - 1Wf§g;,(43) . Lis® R4 C1a8), (88)
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. g (4B) oy d B ‘u‘ eu =
= (ap 1) - anu).(,AB) . Lss® Rna - €4 pp ® €QUyp

MGy 1® (ag 1) L2 ® Ria - €dtipp @ 4tap =

I

=M% 1® (a4, 1) Lis @ Lis - equps ® equyp =

: A A —_
(g 1) - MGD, am - Los @ Lin - eqL.1,,,3® €qU.ep

A B
= (og, 1) - Lin - Mus - equpy & equp-
We now prove our main theorem

TueorEM 2.10. Let (R, ¢, n, m) be a monoid over V and (4, oy, v,) be
left R-module. {AA} admils a structure of monoid such thal cqu g, is a morphism
of monoids over V. . '

Proof. The components of this monoid are denoted by juy 11— {44}
and My : {44} ® {44} =~ {44}. ’

We shall prove that (v, 1) - 74 = (lrg4, Ya) - H R j4 and derive from
here a factorization of j,: I — (4 4) through {4 A} which yiclds our j). Indeed,
one reads from the diagram of [p. 483] that KX -j, = jigx and hence HX .

- j4 = Jrea using the naturality of j. The stated equality now follows using
again the naturality of j. Thus, we have j, = equ,, * j4).

Next, using the previous lemma for A = B, we derive the existence of
M4y on the commutative diagram

{AA]®{aA) J_(L_,iA A)
equ®eqy l i‘qu
o
MAJO(AA)—MAA._.(AA)

So, if we show that ({_AA}, Jiap Mq) is a monoid over V, the above
equality and commutative diagram will show that equy, : ({44}, j Mw) =
— ((44), j4, M4,) actually is a morphism of monoids. We must check MM]

and MM2, that is, the commutativity of the following diagrams

{laajelaalelanl ——fanlellanlelan))

Mam o) (ol AL niplanl JAZetan)
(aslelaa) {AAle{an)

. N ) Ma)

{aal © ~ al

As for the first, the equal; i net
by compoting 1 oyihe quality to be checked is equivalent to the. one Obta;ne

ft with equ We then : 4 (a4’
- equ ® equ) ® equ — 14 . | 44- We then have to verify Mua -
® equ M4a4 equ ® (1\414 * equ® equ):- q. Applying ©® to potb
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members, we successively have (using the naturality . . |
and (3.22)]) o7 TR g the maturality of L, [CC3), [11, (3.19)

TETC(MjA . (‘WI‘:A . e(‘]u ® equ) ® equ) = n((equ, ‘1) .YL‘:A M4 equ ® equ) & "; .
= (eaw feat, 1) - L2 L “equ = fequ, fequ, 1)) - (1, L) - L, - equ =
= feaw, (et V) - (Lo, 1) - L8 L ooquem - vt oot s

= (equ, 1) . (L:h 1) N (1, (eqll, 1)) "Lgﬁ,(d‘q) ‘bLJ,( cequ = : .
= (equ. 1) (Lo 1) - ((ea, 1), 1) - Lidfen Lda Cequ= 7
= (r(M44 - equ ® equ), 1) - Lf,’,'ﬁ,’ a) * Liaa - equ =

= (Mia-cqu@equ, 1) Lis - equ = p - =(Mh; - equ@® (M -equ® equ)) =

= nn(Mis - equ @ (M4 * equ @ equ) - a). t IR

Finally, the last two equalities are equivalent (by left compésitib;'l with

equ,,) to equ - 7p4n = M4 - equ ® 74, equ - lggy = Mty "]' ® equ. Apﬁly/ing
= to these, [II, (3.1), (3.15), (3.172 and (6.2)] and also axiom,sl,‘[CCl] and [CC2],
one easily gets (I, equ) YAy = Yaa - equ, (1, equ) - jug = (equ, 1) - jiaaq), true
by naturality of ¢ and j. e

CoroLLARrY 2.11. Each left R-module (A, «,) has a canonic structure of
left {AA}-module, namely (A, equ,).

DeriNtrioxn 2.1. The monoid ({AA4}, jiy, M) is called the monoid
of the R-endomorphisms of (A, ay). One can now iterate this construction getting
the monoid of the biendomorphisms of the left R-module (A, «4). More exactly,
this monoid is {4 4}} =Equ ((equ, 1) - Ri4, (equ, 1) - L}4) where Equ: {{AA4}}—
— (4.1) is a morphism of monoids over V.

TugoreM 2.12. If (A, «,) is a left R-module, then there exists a canonic
morphism of monoids over. V, Yt R—{{AA}}, such that the diagram

. 2l San)
A A
\R‘/é is commutative.
Proof. By the equy,’s definition we Hhave (a4, 1) - Ri.- equ =
= (w,, 1) - L44 - equ. In fact, we must prove that «, factors through Equ, i.e.,
(equ, 1) - L4, - «, = (equ, 1) - Ri4 - ay

ing ing analogous of [II, (3.1)]: ==Y((g, k)xf) = h - ==*(%) -
f® I;S;ggl at:;}yt;zléo::?gto the egualities above we get the following equivalent

ones
A .
(1) My Caapas - QU oy = M4, equ® «,, respectively
A AA), a1 i
(2) Mis 2, ®cqu= Mi4 - canan - %4 ® equ. Using C(a4),44) = €(A4).(44)

and the naturality of ¢, one obtains (2) by a right composition of (1) with g (a4)-
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i ' : : i hism of monoid

ally, we show that ¢,: R — {{44}} is a morp s over

|4 Fif;l:, -3; - e = jyay is easily seen to be equivalent to «, -'e =j,bya

§fx;1ple left composition with Equ. Next, ¢, - m = M way * Ya ® 4 combineg

with Equ - My = M4 - Equ ® Equ (true, Equ being morphism of monojgg

over V) is seen to be equivalent with ]lg 40 2, ® ay = a, - m which is true,
oir hism of monoids over V. ) .

a4 bel_fgv?rena?ll call §,: R — {{AA}} th)e canonic morphism from R to the
id of the biendomorphisms of (4, ).

monmRe?nark. Using ¢4 on)ae can define faithful and balanced left R-modules,
We conclude this section with the enriched version of a wellknown result :

ProrosITioN 2.13. {{{44}}} = {44} ) )

Proof. We have {{{A4}}} =8qu ((Equ, 1) - R4s, (Equ, 1) - L%,) and
{AA}=equ ({4, 1) ‘Ris (240 1) -LﬁA), these being subobjects of (AA4).

We only have to check the following two equalities (x,, 1) - R4, - 6qu =
=(ag 1) - Lis - 8qu, (Bqu, 1) - Ris - equ = (Equ, 1) - L%, - equ. Using «, =
= Equ - ¢,, the first one obviously follows from the definition of &qu. The
second can be deduced from (equ, 1) - R44 - Equ = (equ, 1) - L4, . Equ (which
is true by Equ’s definition) in a very analogous manner to the first part of
the proof of theorem 2.12.

(Received July 6, 1978)
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ASUPRA UNEI TEORII TMBOGATITE A MODULELOR (J)

(Rezumat)

a lui Es ;ulxzu;a; edrege:ic e;gn:?]monggraﬁe despre categoriile inchise, monoidale si monoidal inchise
modulelor peste un monoid fith [3], autorul elaboreazi partea inchis si monoidal fnchisi 8 teoriel

dald in condifii mai restrictive, | teorie pentru care MacLane a elaborat in [4] partea monoi



