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Abstract

In 1938 [6] Ore proved the following simple caracterization: the
lattice of the subgroups of a group is distributive iff every finite set of
elements generates a cyclic group. In this paper we study how far this
result and other known results for modules given by Camillo in 1975
([2]) can be generalized for lattices.

1 Preliminaries

As in [3], in a lattice L we denote by 0 (resp. 1) the lowest (resp. greatest)
element and for a, b ∈ L, a ≤ b by b/a = {x ∈ L|a ≤ x ≤ b} also called
quotient sublattice (usually denoted as an interval [a, b]). A lattice L is
called noetherian (resp.artinian) if it satisfies the DCC (resp.the ACC).
An element x ∈ L is called noetherian (artinian) if the sublattice x/0 is
noetherian (resp. artinian).

An element x in a lattice L with zero is called distributive if the sub-
lattice x/0 is distributive; a distributive element x is called cycle if x/0 is
also noetherian.

An element c ∈ L is called compact if each cover (i.e. c ≤
∨

X) contains
a finite subcover (i.e. ∃F ⊆ X, F finite : c ≤

∨

F ) and a lattice L is called
algebraic (or compactly generated) if each element of L is a join of
compact elements. In particular, in SR(M) the compact elements are the
finitely generated submodules and the lattice SR(M) is algebraic.

Another condition that will be used and discussed later is: the compact
elements in L are finite joins of cycles.

A weaker condition then the algebraicity is: a lattice L is called upper
continuous if for each (upper) directed set {ai}i∈I

and each b ∈ L the
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equality

(

∨

i∈I

ai

)

∧ b =
∨

i∈I

(ai ∧ b) holds. A stronger condition (see [4] is: a

lattice L is called H-noetherian if the compact elements form an ideal in L
(finite unions of compact elements being obviously compact, this is equivalent
to a ≤ c, c compact ⇒ a compact).

2 Remarks and definitions

Remark 2.1 If G is an abelian group and L(G) the lattice of all the sub-
groups of G then the cycles are exactly the cyclic subgroups.

Indeed, in this particular case noetherian is equivalent to finitely gener-
ated and distributive is equivalent to locally cyclic (i.e. each finite set of
elements generates a cyclic group) - exactly the result of Ore (see abstract).

If RM is a R-module over a ring with identity R we have to compare
the cycles from SR(M) with the cyclic submodules. Hence RM is called a
C-module if the cycles in the sublattice SR(M) of all the submodules are
cyclic submodules. Using results from [5], one can characterize the rings R
such that the cyclic submodules of RM are cycles in SR(M) (see lemma 5.1).

A module RM is called CC-module if its cycles coincide with the cyclic
submodules.

We say that a lattice L has ED [repectivelly EC] (enough distributive
elements [resp.enough cycles]) if for every b, c ∈ L and every distributive
element [resp.cycle] x ≤ b ∨ c there are distributive elements [resp. cycles]
y, z ∈ L such that y ≤ b, z ≤ c and x ≤ y ∨ z. A lattice L is called *ED
(or *EC) if in L each interval has ED (resp. EC). A lattice is called
distributively generated [resp. cycle generated] if every element is a
join of distributive elements [resp. cycles].

Remark 2.2 If RM is a CC-module, then SR(M) the lattice of all the sub-
modules of M has EC and *EC.

Indeed, for B, C ∈ SR(M) and 〈x〉 = Rx ≤ B + C we have x = b + c
for suitable elements b ∈ B, c ∈ C. Hence obviously 〈x〉 ≤ 〈b〉 + 〈c〉 . We
remark that this is true for each algebraic structure based on a (subjacent)
abelian group if the latticial join is the ordinary sum and if the cycles are
cyclic substructures. The condition EC being preserved by submodules and
factor modules, for a C-module RM the lattice SR(M) has *EC too.
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3 General Results

Theorem 3.1 A lattice L is distributive iff L is distributively generated,
has ED and is closed for (finite) joins of distributive elements.

Proof. The condition is obviously necessary because all the elements in a
distributive lattice are distributive (for ED we can choose y = b and z = c).

Conversely, let a, b, c ∈ L. If L is distributively generated in order to
prove the inequality a∧ (b∨ c) ≤ (a∧ b)∨ (a∧ c) it suffices to verify that for
each distributive element x ≤ a ∧ (b ∨ c) we also have x ≤ (a ∧ b) ∨ (a ∧ c).

Now if x ≤ a ∧ (b ∨ c) then x ≤ a and x ≤ b ∨ c. Hence there are
distributive elements y, z ∈ L such that y ≤ b, z ≤ c and x ≤ y ∨ z. The
lattice being closed for finite joins of distributive elements y ∨ z = u is
a distributive element and x, y, z ∈ u/0 a distributive sublattice. Hence
x = x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) ≤ (x ∧ b) ∨ (x ∧ c) ≤ (a ∧ b) ∨ (a ∧ c).2

Lemma 3.1 In a distributive lattice the union of two noetherian elements
is a noetherian element.

Proof. Equivalently, we have to verify that in a distributive lattice L,
a, b ∈ L noetherian elements and a ∨ b = 1 imply L noetherian. Indeed if
b1 ≤ b2 ≤ .. ≤ bn ≤ .. then there are n, m ∈ N∗ such that bn∧a = bn+1∧a = ..
and bm ∧ b = bm+1 ∧ b = .. Hence for k = max(n, m) the following takes place
bk+1 = bk+1 ∧1 = bk+1 ∧ (a∨ b) = (bk+1 ∧a)∨ (bk+1 ∧ b) = (bk ∧a)∨ (bk ∧ b) =
bk ∧ (a ∨ b) = bk ∨ 1 = bk.

So the chain is finite and L is noetherian2

If L is upper continuous then {cycles} ⊆ {noetherians} ⊆ {compacts}
([3] indeed, in an upper continuous lattice each noetherian element is com-
pact). If L is H-noetherian (i.e. the compact elements form an ideal [4]) then
the noetherian and compact elements coincide (see [1]).

The following theorem shows when all these classes coincide and general-
izes the theorem of Ore.

Theorem 3.2 Let L be an algebraic lattice which has EC, such that each
compact element is a finite union of cycles. The following conditions are
equivalent: (a) L is distributive; (b) all the compact elements are cycles (we
call such a lattice a Bezout lattice); (c) L is closed for finite joins of cycles.
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Proof. (a)⇔(c) The hypothesis assure that L is cycle generated. The
proof is similar to the one of our previous theorem. For (a)⇒(c) one uses
also the previous lemma.

(b)⇔(c) Each lattice is closed for finite joins of compact elements ([3]).
The rest is an easy exercise of induction.2

Remark 3.1 The name of Bezout lattice has an obvious explanation: a ring
is left Bezout if each finitely generated left ideal is principal.

4 Lattices with square-free socle

In this section we use a new notion in order to recover also results from [2].
A lattice L has square-free socle if every finite join of atoms is a cycle

(see [2]; indeed, there, a module RM has square-free socle if its socle has
at most one copy of each simple module - a module is called D-module if
SR(M) is a distributive lattice and it is proven that RM is a D-module iff
for each submodule N ∈ SR(M), M/N has a square-free socle). Here our
choice (for a suitable lattice condition) is explained as follows: in the lattice
L(G) of all the subgroups of an abelian group G, the atoms are the simple
subgroups, that is, the cyclic subgroups of prime order. Two such atoms are
not isomorphic iff their direct sum is again a cyclic subgroup. So its socle
contains at most one copy of each simple subgroups if each sum of atoms is
a cycle (this leads also to a classification of the atoms in a lattice).

Lemma 4.1 Let a ∈ L. If L is algebraic then 1/a is also algebraic.(see [4]).
2

Lemma 4.2 Let a ∈ L a modular lattice. If in L each compact element is a
finite join of cycles then the sublattice 1/a has this property too.

Proof. An element k is compact in 1/a iff there is a compact c in L such

that k = c∨a (see [4]). Now, if c =
n
∨

i=1

xi is the finite cycle decomposition then,

using the modularity, (xi ∨ a)/a ∼= xi/(xi ∧ a) ⊆ xi/0 so that {xi ∨ a}n

i=1
are

cycles in 1/a and hence k = c∨a =
n
∨

i=1

(xi∨a) is the required decomposition.2
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Theorem 4.1 Let L be an algebraic lattice with *EC such that each compact
element is a finite join of cycles. If L is distributive then for every a ∈ L the
sublattice 1/a has square-free socle.

Proof. If L is distributive (and hence modular), obviously the sublattice
1/a is distributive too. The previous lemmas and the stronger hypothesis
*EC show that Theorem 3.2 is applicable in 1/a. Hence in 1/a every finite
join of cycles is a cycle. But each atom is clearly a cycle so that 1/a has
square-free socle.2

Reasonable conditions which assure that the converse of the previous
theorem is also true seem to be difficult to find. If all the sublattices 1/a
have square-free socles and (i) L is H-noetherian, or (ii) L has only cycles of
finite length, we can prove that in L unions of cycles are noetherian elements.
The difficult problem is to assure that these are also distributive.

5 Applications

As we have already anticipated

Lemma 5.1 For each R-module RM the cyclic submodules in SR(M) are
cycles iff R is left noetherian and left arithmetic.2

Here a ring is called left arithmetic (Fuchs,1949) if the lattice of all its
left ideals is distributive. The proof in an exercise.

We saw that ifRM is a R-module, the lattice of all the submodules SR(M)
is modular, algebraic (compact generated) and if it is a CC-module, it has
*EC. Then, the compact elements being the finitely generated submodules,
the compact elements are finite joins of cycles so that all the hypothesis in
the previous theorem are fulfilled and half of the result of Camillo could be
deduced if the condition ”each sum of simple submodules is a cyclic submod-
ule” implies ”the module has at most one copy of each simple module in its
socle”.

We call a ring R a C-ring if all the R-modules are C-modules respectively
a CC-ring if all the R-modules are CC-modules.

From theorem 3.2 we immediately derive
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Theorem 5.1 The lattice of all the submodules SR(M) of a R-module RM
over a CC-ring R is distributive (RM is a D-module) iff the sum of two
arbitrary cyclic submodules is also a cyclic submodule.2

We finish with a list of module and ring open problems:
1) For an arbitrary ring R with identity caracterize the C-modules RM.
2) Determine the C-rings resp. the CC-rings.
3) Find the rings R, such that for each left R-module RM , if each sum

of simple submodules is a cyclic submodule then RM has at most one copy
of each simple module in its socle.

Added in proof: the implication in theorem 4.1 holds without the use
of the condition *EC. For this remark I am indebted to Prof.Laszlo Fuchs.
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