UNITS OF A SUBRING WITH DIFFERENT IDENTITY "PRODUCE" UNITS OF THE WHOLE RING

Exercise 1. Let S be a subring of a ring R and let 1_{S} be the identity of S and 1_{R} the identity of R.
(1) Show that each unit of S "produces" a unit of R.
(2) If $1_{S} \neq 1_{R}$ then 1_{S} is a zero divisor of R.

Solution 2. (1) Suppose $u, v \in S$ and $u v=v s=1_{S}$ (i.e., $u, v \in U(S)$). Then $u-\left(1_{R}-1_{S}\right)$ is a unit of R with inverse $v-\left(1_{R}-1_{S}\right)$. Notice that (obviously by definition of 1_{R}) $1_{R} \cdot 1_{S}=1_{S} \cdot 1_{R}=1_{S}$ and so (by simple computation) $\left[u-\left(1_{R}-\right.\right.$ $\left.\left.1_{S}\right)\right] \cdot\left[v-\left(1_{R}-1_{S}\right)\right]=\left[v-\left(1_{R}-1_{S}\right)\right] \cdot\left[u-\left(1_{R}-1_{S}\right)\right]=1_{R}$.
(2) Just observe $\left(1_{R}-1_{S}\right) \cdot 1_{S}=0$.

Remarks. 1) This correspondence defines an injective function from $U(S)$ to $U(R)$. Hence for the cardinals, $|U(S)| \leq|U(R)|$.
2) If e is an idempotent in a subring S, it is also an idempotent in the whole ring. Notice (again by simple computation) that also $e+1_{R}-1_{S}$ is an (possible different) idempotent in R.

Examples. 1) For $S=2 \mathbb{Z}_{10}$ and $R=\mathbb{Z}_{10}, 1_{S}=\overline{6}$ and $1_{R}=\overline{1}$.
2) If R, S are rings, then the subring $R \times\{0\} \subset R \times S$ has the identity ($\left.1_{R}, 0\right)$.

