Diagonal expansion for 3×3 matrices

December 23, 2021

Exercise [high school]. Find a necessary and sufficient condition for a 3×3 matrix A whose determinant can be computed using the three diagonal minors, multiplied by the complement diagonal entries, that is, if $A=\left[a_{i j}\right], 1 \leq i, j \leq 3$ then

$$
\operatorname{det} A=a_{11} A_{23}^{23}-a_{22} A_{13}^{13}+a_{33} A_{12}^{12}
$$

where $A_{i j}^{s t}$ denotes the 2×2 minor on the rows i, j and columns s, t.
For example, $A_{23}^{23}=\operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]$ is one of the diagonal minors.
Solution 1 Just computation. The necessary and sufficient condition is

$$
a_{13} A_{23}^{12}+a_{31} A_{12}^{23}=0
$$

Examples. $\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 3 & 5 \\ 3 & 4 & m\end{array}\right]$ for any $m(\operatorname{det}=-m+7),\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0\end{array}\right] \quad(\operatorname{det}=$
1).

