# Again on gcd's 

Grigore Călugăreanu

November 3, 2023

## 1 Introduction

When discussing the commutative domain $\mathbb{Z}[\sqrt{-5}]$, all Ring Theory texts mention that this is not UFD (unique factorization domain) because of

$$
3 \cdot 2=(1+i \sqrt{5})(1-i \sqrt{5})
$$

which are two decompositions not associated in divisibility.
Only some of these mention that this is not GCD (greatest common divisors exit), the customarily example being the pair $(6,2(1+i \sqrt{5}))$ which is proved not having a gcd (using the so-called "norm" of elements in $\mathbb{Z}[\sqrt{-5}]$ : $N(a+b i \sqrt{5})=a^{2}+5 b^{2}$. See Example 4 below).

Merely none of these mention that the "well-known" property

$$
a|b c, \operatorname{gcd}(a, b)=1 \Longrightarrow a| c
$$

fails.
Indeed, as above, 3 (or 2 ) divides $(1+i \sqrt{5})(1-i \sqrt{5}), \operatorname{gcd}(3,1 \pm i \sqrt{5})=1$ but $3 \nmid 1 \pm i \sqrt{5}$.

However, if a domain is GCD then the above property holds.
Lemma 1 (i) $d_{1} \mid a, b$ implies $d_{1} \mid \operatorname{gcd}(a, b)$.
(ii) $r \operatorname{gcd}(a, b)=\operatorname{gcd}(r a, r b)$ for every $r$, if both $\operatorname{gcd}^{\prime} s$ exist.
(iii) $a|b c, \operatorname{gcd}(a, b)=1 \Longrightarrow a| c$.

Proof. (i) The definition of the gcd.
(ii) Let $d=\operatorname{gcd}(a, b)$ and $d_{1}=\operatorname{gcd}(r a, r b)$. Then $r d$ divides both $r a$ and $r b$. So it divides $d_{1}$. Write $d_{1}=r d s$.

Write $a=d a_{1}, b=d b_{1}$, and write $r a=d_{1} x, r b=d_{1} y$. Then $d_{1} a_{1}=r d s a_{1}=$ ras $=d_{1} x s$ and $d_{1} b_{1}=r d s b_{1}=r b s=d_{1} y s$.

So $a_{1}=x s, b_{1}=y s$. Since $\operatorname{gcd}\left(a_{1}, b_{1}\right)=1, s=1$. So $d_{1}=r d$.
Proof. (iii) In fact, if both $\operatorname{gcd}^{\prime} \mathrm{s}$ exist, $\operatorname{gcd}(a, b)=1$ implies $\operatorname{gcd}(a c, b c)=$ $c \operatorname{gcd}(a, b)=c$. As $a$ is a common divisor of $a c$ and $b c, a$ divides $\operatorname{gcd}(a c, b c)$. That is, $a$ divides $c$.

By cancellation, it is easy to prove a converse for (ii): $\operatorname{gcd}(a r, b r)=r$ implies $\operatorname{gcd}(a, b)=1$.

From [2].

Proposition 2 Let $D$ be an integral domain and $a, b \in D$. Then the following are equivalent:

1. a,b have an lcm,
2. for any $r \in D$, ra, rb have a gcd.

Proof. For arbitrary $x, y \in D$, denote $\operatorname{LCM}(x, y)$ and $G C D(x, y)$ the sets of all lcm's and all gcd's of $x$ and $y$, respectively.
$\mathbf{1} \Rightarrow \mathbf{2}$. Let $c \in \operatorname{LCM}(a, b)$. Then $c=a x=b y$, for some $x, y \in D$. For any $r \in D$, since $r a b$ is a multiple of $a$ and $b$, there is a $d \in D$ such that $r a b=c d$. We claim that $d \in G C D(r a, r b)$. There are two steps: showing that $d$ is a common divisor of $r a$ and $r b$, and that any common divisor of $r a$ and $r b$ is a divisor of $d$.

1. Since $c=a x$, the equation $r a b=c d=a x d$ reduces to $r b=x d$, so $d$ divides $r b$. Similarly, $r a=y d$, so $d$ is a common divisor of $r a$ and $r b$.
2. Next, let $t$ be any common divisor of $r a$ and $r b$, say $r a=u t$ and $r b=v t$ for some $u, v \in D$. Then $u v t=r a v=r b u$, so that $z:=a v=b u$ is a multiple of both $a$ and $b$, and hence is a multiple of $c$, say $z=c w$ for some $w \in D$. Then the equation $a x w=c w=z=a v$ reduces to $x w=v$. Multiplying both sides by $t$ gives $x w t=v t$. Since $v t=r b=x d$, we have $x d=x w t$, or $d=w t$, so that $d$ is a multiple of $t$. As a result, $d \in G C D(r a, r b)$.
$\mathbf{2} \Rightarrow \mathbf{1}$. Suppose $k \in G C D(a, b)$. Write $k i=a, k j=b$ for some $i, j \in D$. Set $l=k i j$, so that $a b=k l$. We want to show that $l \in \operatorname{LCM}(a, b)$. First, notice that $l=a j=b i$, so that $a \mid l$ and $b \mid l$. Now, suppose $a \mid t$ and $b \mid t$, we want to show that $l \mid t$ as well. Write $t=a x=b y$. Then $t a=a b y$ and $t b=a b x$, so that $a b \mid t a$ and $a b \mid t b$. Since $G C D(t a, t b) \neq \varnothing$, we have $t k \in G C D(t a, t b)$, implying $a b \mid t k$. In other words $t k=a b z$ for some $z \in D$. As a result, $t k=a b z=k l z$, or $t=l z$. In other words, $l \mid t$, as desired.

Corollary 3 Let $D$ be an integral domain. Then $D$ is a lcm domain iff it is a gcd domain.

Moreover, [Bill Dubuque] (to avoid introducing several new letters, formally fractions are used)

Theorem $4 \operatorname{gcd}(a, b)=a b / \operatorname{lcm}(a, b)$ if $\operatorname{lcm}(a, b)$ exists.
Proof. $d|a, b \Longleftrightarrow a, b| \frac{a b}{d} \Longleftrightarrow[a, b]\left|\frac{a b}{d} \Longleftrightarrow d\right| \frac{a b}{[a, b]}$.
Examples. 1) $\operatorname{gcd}(a, b)=1$ implies $\operatorname{gcd}(a c, b c)=c$, fails.
A counterexample appears already above: $\operatorname{gcd}(3,1 \pm i \sqrt{5})=1$ but $\operatorname{gcd}(2$. $3,2(1 \pm i \sqrt{5})$ ) (not only is not 2 but) does not exist.
2) In $\mathbb{Z}[\sqrt{-3}]$ consider $a=2, b=1-i \sqrt{3}$. We have $\operatorname{gcd}(a, b)=1$ but $\operatorname{gcd}(2 a, 2 b)=\operatorname{gcd}(4,2-2 i \sqrt{3})$ doesn't exist, so $l:=\operatorname{lcm}(a, b)$ doesn't exist (by the equivalence in the previous section). More explicitly, if the $1 \mathrm{~cm} l$ existed then
$2, b|4,2 b \Rightarrow l| 4,\left.2 b \Rightarrow \frac{l}{2}\left|2, b \Rightarrow \frac{l}{2}=1 \Rightarrow l=2 \Rightarrow b\right| 2 \Rightarrow b \right\rvert\, a, \mathrm{a}$ contradiction.
3) $\operatorname{gcd}(3,1 \pm i \sqrt{5})=1$.

As $N(3)=9, N(1 \pm i \sqrt{5})=6$ if $d$ is a common divisor, then $N(d) \mid$ $\operatorname{gcd}(9,6)=3$ so $N(d) \in\{1,3\}$. The equation $a^{2}+5 b^{2}=3$ has no solution.
4) $\operatorname{gcd}(2 \cdot 3,2(1 \pm i \sqrt{5}))$ does not exist.

Note that both 2 and $1 \pm i \sqrt{5}$ are divisors of 6 . Hence, if $\delta=\operatorname{gcd}(2$. $3,2(1 \pm i \sqrt{5}))$ exists then $N(2)=4$ and $N(1 \pm i \sqrt{5})=6$ would divide $N(\delta)$. Consequently, $\operatorname{lcm}(4,6)=12$ would divide $N(\delta)$.

On the other hand, since $\delta \mid 6,2(1 \pm i \sqrt{5})$ it follows that $N(\delta) \mid 36,24$ and so $N(\delta) \mid \operatorname{gcd}(36,24)=12$.

Therefore $N(\delta)=12$. Finally, $\delta$ does not exist as the equation $a^{2}+5 b^{2}=12$ has no (integer) solutions.
5) $\operatorname{gcd}(8,6+2 i \sqrt{5})$ does not exist

Since $\operatorname{gcd}(4,3+i \sqrt{5})=1$, cancellation by 2 in $8 \cdot(-7)=(6+2 i \sqrt{5})(-6+2 i \sqrt{5})$ gives $4 \cdot(-7)=(3+i \sqrt{5})(-6+2 i \sqrt{5})$.

If the gcd above exists, it should follow that 4 divides $-6+2 i \sqrt{5}$. Since $N(4)=16, N(-6+2 i \sqrt{5})=56$ we derive $16 \mid 56$, a contradiction.

## References

[1] Bill Dubuque https://math.stackexchange.com/questions/235139
[2] C. Woo https://planetmath.org/anintegraldomainislcmiffitisgcd (2013).

