Again on gcd's

Grigore Călugăreanu

November 3, 2023

1 Introduction

When discussing the commutative domain $\mathbb{Z}[\sqrt{-5}]$, all Ring Theory texts mention that **this is not UFD** (unique factorization domain) because of

 $3 \cdot 2 = (1 + i\sqrt{5})(1 - i\sqrt{5})$

which are two decompositions not associated in divisibility.

Only some of these mention that **this is not GCD** (greatest common divisors exit), the customarily example being the pair $(6, 2(1 + i\sqrt{5}))$ which is proved **not** having a gcd (using the so-called "norm" of elements in $\mathbb{Z}[\sqrt{-5}]$: $N(a + bi\sqrt{5}) = a^2 + 5b^2$. See Example 4 below).

Merely none of these mention that the "well-known" property

 $a \mid bc, \gcd(a, b) = 1 \Longrightarrow a \mid c$

fails.

Indeed, as above, 3 (or 2) divides $(1 + i\sqrt{5})(1 - i\sqrt{5})$, $gcd(3, 1 \pm i\sqrt{5}) = 1$ but $3 \nmid 1 \pm i\sqrt{5}$.

However, if a domain is GCD then the above property holds.

Lemma 1 (i) $d_1 \mid a, b$ implies $d_1 \mid \text{gcd}(a, b)$.

(ii) $r \operatorname{gcd}(a, b) = \operatorname{gcd}(ra, rb)$ for every r, if both $\operatorname{gcd}'s$ exist. (iii) $a \mid bc, \operatorname{gcd}(a, b) = 1 \Longrightarrow a \mid c$.

Proof. (i) The definition of the gcd.

(ii) Let $d = \gcd(a, b)$ and $d_1 = \gcd(ra, rb)$. Then rd divides both ra and rb. So it divides d_1 . Write $d_1 = rds$.

Write $a = da_1$, $b = db_1$, and write $ra = d_1x$, $rb = d_1y$. Then $d_1a_1 = rdsa_1 = ras = d_1xs$ and $d_1b_1 = rdsb_1 = rbs = d_1ys$.

So $a_1 = xs$, $b_1 = ys$. Since $gcd(a_1, b_1) = 1$, s = 1. So $d_1 = rd$.

Proof. (iii) In fact, if both gcd's exist, gcd(a, b) = 1 implies gcd(ac, bc) = c gcd(a, b) = c. As a is a common divisor of ac and bc, a divides gcd(ac, bc). That is, a divides c.

By cancellation, it is easy to prove a converse for (ii): gcd(ar, br) = r implies gcd(a, b) = 1.

From [2].

Proposition 2 Let D be an integral domain and $a, b \in D$. Then the following are equivalent:

- 1. a, b have an lcm,
- 2. for any $r \in D$, ra, rb have a gcd.

Proof. For arbitrary $x, y \in D$, denote LCM(x, y) and GCD(x, y) the sets of all lcm's and all gcd's of x and y, respectively.

 $1 \Rightarrow 2$. Let $c \in LCM(a, b)$. Then c = ax = by, for some $x, y \in D$. For any $r \in D$, since rab is a multiple of a and b, there is a $d \in D$ such that rab = cd. We claim that $d \in GCD(ra, rb)$. There are two steps: showing that d is a common divisor of ra and rb, and that any common divisor of ra and rb is a divisor of d.

1. Since c = ax, the equation rab = cd = axd reduces to rb = xd, so d divides rb. Similarly, ra = yd, so d is a common divisor of ra and rb.

2. Next, let t be any common divisor of ra and rb, say ra = ut and rb = vtfor some $u, v \in D$. Then uvt = rav = rbu, so that z := av = bu is a multiple of both a and b, and hence is a multiple of c, say z = cw for some $w \in D$. Then the equation axw = cw = z = av reduces to xw = v. Multiplying both sides by t gives xwt = vt. Since vt = rb = xd, we have xd = xwt, or d = wt, so that d is a multiple of t. As a result, $d \in GCD(ra, rb)$.

 $\mathbf{2} \Rightarrow \mathbf{1}$. Suppose $k \in GCD(a, b)$. Write ki = a, kj = b for some $i, j \in D$. Set l = kij, so that ab = kl. We want to show that $l \in LCM(a, b)$. First, notice that l = aj = bi, so that $a \mid l$ and $b \mid l$. Now, suppose $a \mid t$ and $b \mid t$, we want to show that $l \mid t$ as well. Write t = ax = by. Then ta = aby and tb = abx, so that $ab \mid ta \text{ and } ab \mid tb.$ Since $GCD(ta, tb) \neq \emptyset$, we have $tk \in GCD(ta, tb)$, implying $ab \mid tk$. In other words tk = abz for some $z \in D$. As a result, tk = abz = klz, or t = lz. In other words, $l \mid t$, as desired.

Corollary 3 Let D be an integral domain. Then D is a lcm domain iff it is a gcd domain.

Moreover, [Bill Dubuque] (to avoid introducing several new letters, formally fractions are used)

Theorem 4 gcd(a, b) = ab/lcm(a, b) if lcm(a, b) exists.

Proof. $d \mid a, b \iff a, b \mid \frac{ab}{d} \iff [a, b] \mid \frac{ab}{d} \iff d \mid \frac{ab}{[a,b]}$. **Examples.** 1) gcd(a, b) = 1 implies gcd(ac, bc) = c, fails.

A counterexample appears already above: $gcd(3, 1 \pm i\sqrt{5}) = 1$ but $gcd(2 \cdot i\sqrt{5}) = 1$ $3, 2(1 \pm i\sqrt{5}))$ (not only is not 2 but) does not exist.

2) In $\mathbb{Z}[\sqrt{-3}]$ consider $a = 2, b = 1 - i\sqrt{3}$. We have gcd(a, b) = 1 but $gcd(2a, 2b) = gcd(4, 2 - 2i\sqrt{3})$ doesn't exist, so l := lcm(a, b) doesn't exist (by the equivalence in the previous section). More explicitly, if the lcm l existed then

 $2, b \mid 4, 2b \Rightarrow l \mid 4, 2b \Rightarrow \frac{l}{2} \mid 2, b \Rightarrow \frac{l}{2} = 1 \Rightarrow l = 2 \Rightarrow b \mid 2 \Rightarrow b \mid a, a$ contradiction.

3) $gcd(3, 1 \pm i\sqrt{5}) = 1.$

As N(3) = 9, $N(1 \pm i\sqrt{5}) = 6$ if d is a common divisor, then N(d) |gcd(9, 6) = 3 so $N(d) \in \{1, 3\}$. The equation $a^2 + 5b^2 = 3$ has no solution. 4) gcd $(2 \cdot 3, 2(1 \pm i\sqrt{5}))$ does not exist.

Note that both 2 and $1 \pm i\sqrt{5}$ are divisors of 6. Hence, if $\delta = \gcd(2 \cdot 3, 2(1 \pm i\sqrt{5}))$ exists then N(2) = 4 and $N(1 \pm i\sqrt{5}) = 6$ would divide $N(\delta)$. Consequently, $\operatorname{lcm}(4, 6) = 12$ would divide $N(\delta)$.

On the other hand, since $\delta \mid 6, 2(1 \pm i\sqrt{5})$ it follows that $N(\delta) \mid 36, 24$ and so $N(\delta) \mid \gcd(36, 24) = 12$.

Therefore $N(\delta) = 12$. Finally, δ does not exist as the equation $a^2 + 5b^2 = 12$ has no (integer) solutions.

5) $gcd(8, 6 + 2i\sqrt{5})$ does not exist

Since $gcd(4, 3+i\sqrt{5}) = 1$, cancellation by 2 in $8 \cdot (-7) = (6+2i\sqrt{5})(-6+2i\sqrt{5})$ gives $4 \cdot (-7) = (3+i\sqrt{5})(-6+2i\sqrt{5})$.

If the gcd above exists, it should follow that 4 divides $-6 + 2i\sqrt{5}$. Since N(4) = 16, $N(-6 + 2i\sqrt{5}) = 56$ we derive $16 \mid 56$, a contradiction.

References

[1] Bill Dubuque https://math.stackexchange.com/questions/235139

[2] C. Woo https://planetmath.org/anintegraldomainislcmiffitisgcd (2013).