
Rendiconti del Circolo Matematico di Palermo Series 2
https://doi.org/10.1007/s12215-023-00909-0

Dependent rings

Grigore Călugăreanu1
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Abstract
A ring was called right dependent if the elements of the regular module RR are right depen-
dent, in the usual sense of Linear Algebra. Examples include: the commutative rings, the
unit-regular rings, the rings satisfying the strong rank condition, matrix rings over com-
mutative rings and many others. In this note, the right (resp. left) dependent rings are
studied.
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1 Introduction

As early as 1968, G. Ehrlich (see [6], Theorem 6) pointed out that a necessary condition for
a ring to be unit-regular is to be dependent, in the usual sense of Linear Algebra. To be more
precise, we start with the following

Definition Two elements a, b in a ring R are called right dependent, if there are elements
s, t ∈ R not both zero such that as + bt = 0. A ring is called right dependent if every
two elements are right dependent. Inversely, two nonzero elements a, b will be called right
independent if ax + by = 0 holds only for x = y = 0. Left (in)dependence is defined
symmetrically. We say that a ring is (in)dependent if it is both right and left (in)dependent.

Equivalently, these definitions can be given using the (regular) modules RR or R R: a,
b ∈ R are right dependent, iff these are R -dependent in RR and left dependent, if these are
R-dependent in R R.

As far as we were able to find, no paper since [6] has studied this condition.
The classes of right (or left) dependent rings are quite large.
Obviously, any two elements which commute are dependent (ab + b(−a) = 0 ). Hence

commutative rings are dependent.
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Moreover, matrix rings over commutative rings turn out to be dependent.
However, the endomorphism ring of an infinite dimensional vector space over a division

ring is not dependent.
In this note we study right (resp. left) dependent rings.
Since these conditions will appear subsequently, we recall here the following

Definitions A ring R is said to have (right) IBN (“Invariant Basis Number”) if, for any
natural numbers n,m, Rn ∼= Rm implies n = m. This means that any two bases on a finitely
generated free module FR have the same (finite) number of elements (called the rank of F).
As it turns out, the IBN condition is right-left symmetric.

A ring R satisfies the (right) rank condition (RC for short) if, for any natural number n,
any set of R-module generators for (Rn)R has cardinality ≥ n. Equivalently, if there is an
epimorphism Rn → Rm in Mod-R, then n ≥ m. This condition is also right-left symmetric.

We say that R satisfies the right strong rank condition (SRC, for short) if, for every
natural number n, any set of linearly independent elements in (Rn)R has cardinality ≤ n.
Equivalently, for any n, any set of more than n vectors must be (linearly) dependent in (Rn)R .
Also equivalently, if there is a monomorphism of right free modules Rm → Rn then m ≤ n.
The left strong condition is defined symmetrically but examples show that the SRC condition
is not right-left symmetric.

Finally, consider S a multiplicative(ly closed) (sub)set of R, i.e., S · S ⊆ S, 1 ∈ S and
0 /∈ S. Then S is called right permutable if for any a ∈ R and s ∈ S, aS ∩ sR 	= ∅. Let S be
the multiplicative set of all the non left nor right 0-divisors of R. Then R is called right Ore
ring if S is right permutable. Symmetrically, one defines left permutable subsets of rings and
left Ore rings and examples show that the Ore condition is not right-left symmetric.

Besides its properties (the usual Ring Theory constructions are discussed in Sect. 2), the
class of right dependent rings (properly) includes not only the unit-regular rings but also
includes the class of rings which have the right SRC and is included in the class of rings
which have IBN1, that is, rings which have a rank and this rank is 1. Refinements of the
SRC, RC and IBN conditions are introduced and studied, with special emphasis to the (right)
dependence condition, in Sect. 3. Several delimit examples are given in Sect. 4. To stimulate
future work, some open questions are raised all over the paper.

Our main results are
A direct product ring R × S is right (or left) dependent iff so is one of R and S.
Matrix rings over right (or left) dependent rings are right (resp. left) dependent.
If R[x] or R[[x]] is right (or left) dependent then R is right (resp. left) dependent. The

converses fail.
A domain is right (or left) dependent iff it is right (resp. left) Ore.
The right (or left) dependence property is
- not right-left symmetric
- logically independent from von Neumann regularity.
Subrings and quotient rings of right (or left) dependent rings, may not be right (resp. left)

dependent.
The rings we consider are nonzero, associative and with identity. As customary Mn(R)

denotes the matrix ring over R, and Tn(R) the ring of (upper) triangular matrices over R. A
ring R is called Dedekind finite (DF for short) if for any a, b ∈ R, ba = 1 whenever ab = 1.

To simplify the writing, in the sequel we refer to right dependent elements and right
dependent rings. Unless otherwise stated, the corresponding results “on the left” also hold.
However, for convenience (with few exceptions), we shall continue to write “dependent” to
refer to right dependent.
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2 Dependence results

The binary relation of dependence on a ring R, is clearly symmetric and reflexive (on the
right: a.r + a.(−r) = 0 for any r 	= 0) but trivially not transitive.

Indeed, let a, b be independent in a ring R. Then a and 0 (or 1) are dependent and 0 (resp.
1) and b are dependent.

We continue with a useful

Definition An element a ∈ R will be called right (or left) absolutely dependent if for every
r ∈ R, a and r are right (resp. left) dependent.

Clearly, a ring is right (or left) dependent iff it has only right (resp. left) absolutely
dependent elements.

Clearly, the center Z(R) of any ring R consists only of (right or left) absolutely dependent
elements. In particular, 0 and 1 are absolutely dependent in any ring.

Moreover, if a is (right or left) absolutely dependent, so is ac = ca for any c ∈ Z(R)

(indeed, ax + ry = 0 implies (ac)x + r(cy) = 0 if x 	= 0 and (ac)0 + ry = 0 if x = 0 and
so y 	= 0).

A similar result holds replacing central elements with units.

Lemma 1 If a is absolutely dependent and u is a unit then au and ua are also absolutely
dependent.

Proof Let 0 	= r ∈ R. There are s, t ∈ R not both zero such that (au)u−1s+r t = as+r t = 0.
Since u−1s = 0 iff s = 0, au and r are dependent.

As for ua, by contradiction, suppose ua and c ∈ R are independent. Then for any s, t ∈ R,
uas + ct = 0 implies s = t = 0. Since uas + ct = 0 is equivalent to as + u−1ct = 0, it
follows that a and u−1c are independent, a contradiction. 
�
Corollary 2 If b ∈ R is equivalent to a and a is absolutely dependent, so is b.

Proof Just recall that b is equivalent to a if b = uav for some units u and v. 
�
It turns out that there are plenty of absolutely dependent elements in any ring. Indeed

Lemma 3 (i) Any left zero divisor is (right) absolutely dependent.
(ii) Any right invertible element is (right) absolutely dependent.

Proof (i) If there exists c 	= 0 with ac = 0 then ac + r .0 = 0 for any r ∈ R.
(ii) If ab = 1 then a(br) + r(−1) = 0 for any r ∈ R. 
�
Since in any nonzero right Artinian ring, every element is a left zero divisor or is right

invertible, we infer that right Artinian rings are right dependent. More general examples will
follow.

Note that all the (main) special elements Ring Theory uses, are absolutely dependent:
idempotents and nilpotents in any ring are (left and right) zero divisors, and units are right
(and left) invertible.

Hence, Boolean rings, division rings and local rings are dependent.
The following result will be useful.

Lemma 4 In a direct product ring R× S, (a, b) is absolutely dependent iff so is one of a and
b.
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Proof Suppose (say) a is absolutely dependent in R. For every r ∈ R there are x , y not both
zero such that ax + ry = 0. Hence for every b, s ∈ S, (a, b)(x, 0) + (r , s)(y, 0) = (0, 0)
and (x, 0), (y, 0) are not both zero. Notice that this holds for every b ∈ S, that is, if a is
absolutely dependent in R, for any b ∈ S, the pair (a, b) is absolutely dependent in R × S.
Conversely, assume neither a nor b are absolutely dependent. There are c ∈ R, d ∈ S
with a, c independent in R and b, d independent in S. By contradiction assume (a, b) is
absolutely dependent. Then there exist pairs (x, y), (z, w) ∈ R × S, not both (0, 0) such
that (a, b)(x, y) + (c, d)(z, w) = (0, 0). However, by independence, ax + cz = 0 implies
x = z = 0 and by + dw = 0 implies y = w = 0, that is both (x, y) = (z, w) = (0, 0), a
contradiction. 
�

Using this lemma we can prove a result for direct products of dependent rings, perfectly
analogous to the one proved for rings with the strong rank condition (see 1.33 [9]): a direct
product R = A × B satisfies the (right) SRC iff one of A, B does.

Proposition 5 A direct product ring R × S is dependent iff so is one of R and S.

Proof If (say) R is dependent and (a, b) ∈ R × S, then a is absolutely dependent and so
is (a, b) by the previous lemma. Conversely, if neither R nor S are dependent, so is R × S,
again by the previous lemma. 
�

This extends to arbitrary direct products of dependent rings and, as in the SRC special
case (see 1.34 [9]), implies

Corollary 6 If R is a dependent ring, so is R × S for any ring S.

Question Characterize the indecomposable dependent rings, that is, those which have no
nontrivial central idempotents.

Remark We noticed that products of absolutely dependent elements with central elements or
with units, are also absolutely dependent. However, a product of two absolutely dependent
elements, may not be absolutely dependent.

Indeed, according to the previous lemma, if we take not absolutely dependent a ∈ R and
b ∈ S, then (a, 1) and (1, b) are absolutely dependent in R×S because 1 is, but their product,
(a, b), is not.

Some other cases of absolutely dependent products are recorded in the following

Lemma 7 (1) If a is absolutely dependent and b is right invertible then ab is absolutely
dependent. Equivalently, if ab and c are independent and b is right invertible then a and c
are independent.

(2) If b is a left zero divisor then for every a ∈ R, ab is absolutely dependent.
(3) If a is absolutely dependent and b is a left zero divisor then ab is absolutely dependent.

Proof (1) By contradiction, suppose ab and c are independent. Then for every s, t ∈ R,
(ab)s + ct = 0 implies s = t = 0. Since bR = R, this implies that a and c are independent.

(2) Obviously ab is also a left zero divisor and we use the previous lemma.
(3) Suppose bc = 0 for c 	= 0. Then (ab)c + r .0 = 0 for any r ∈ R, shows that ab is

absolutely dependent. 
�
We can adapt the proof from [6] for
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Proposition 8 In any ring, every unit-regular element is absolutely dependent.

Proof Let a be unit-regular. If a has a right inverse, it is absolutely dependent by previous
lemma. If a has no right inverse, write a = eu for e = e2 and unit u. Then au−1(1 − e) =
0 = au−1(1− e)+ r .0 = 0 for any r ∈ R. Here u−1(1− e) 	= 0. Otherwise u−1(1− e) = 0
implies e = 1 and so a = u, a contradiction.

The left case is symmetric. 
�
Corollary 9 ([6]) Unit-regular rings are dependent.

Remarks (1) It was noted in [6] that Z(n) is (unit-)regular iff n is square-free. Hence Z(n)

with any not square-free n is dependent but not unit-regular.
(2) Since the following inclusions of classes of rings are well-known {one sided Artinian}

⊆ {semiprimary} ⊆ {right or left perfect} ⊆ {strongly regular} ⊆ {strongly π-regular}
⊆ {unit-regular}, all these classes of rings are dependent. In particular, finite rings are
dependent.

(3) The following result may be found in [6]: If a has no right inverse and is unit-regular
then a is a left zero divisor.

This result cannot be generalized, replacing “unit-regular” with “right dependent”. Oth-
erwise, the (right) absolutely dependent elements would be precisely those in Lemma 3: the
right invertible elements and the left zero divisors. This fails for instance in M2(Z).

According to Corollary 12 (below, after the next theorem),M2(Z) is dependent, that is, all

integral 2 × 2 matrices are absolutely dependent. However

[
2 1
0 1

]
is neither right invertible

nor left zero divisor.

Questions (1) Describe the rings all whose elements in the Jacobson radical are absolutely
dependent.

(2) Describe the dependent simple rings. As the referee pointed out, the Leavitt algebras
LK (1, 1 + k) of type (1, 1 + k) (see [11]), are examples of simple rings which are not
dependent.

In what follows we prove that matrix rings over dependent rings are dependent. First we
need the following

Lemma 10 Let R ⊆ S be nonzero rings, with S isomorphic to Rk for a finite cardinal k. Then
S is dependent iff R is dependent.

Proof To prove the “if” part, consider an inclusion Sm ⊆ S. This implies that Rmk ⊆ Rk .
Thus, mk ≤ k, and this implies that m ≤ 1. The proof for the “only if” part is similar:
consider an inclusion Rm ⊆ R. Then Rmk ⊆ Rk and so Sm ⊆ S. Hence m ≤ 1. 
�
Theorem 11 For a ring R the following conditions are equivalent

(i) R is dependent;
(ii) for every natural number n, Mn(R) is dependent;
(iii) for some natural number n, Mn(R) is dependent.

Proof (i) ⇒ (ii) Follows from the previous lemma, since if S = Mn(R) then S is isomorphic
to Rn2 .

(ii) ⇒ (iii) Obvious.
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(iii) ⇒ (i) Start with a, b ∈ R and consider aIn, bIn ∈ Mn(R). By hypothesis, there are
S, T ∈ Mn(R), not both zero (matrix) such that aIn S + bInT = 0n . If any si j 	= 0 then
asi j + bti j = 0 shows a, b are dependent. If any ti j 	= 0, again asi j + bti j = 0 shows a, b
are dependent. 
�
Remark In Exercise 17.1 [9], it was required to show that R satisfies IBN (or the rank
condition) iff Mn(R) (for some n ≥ 1) satisfies IBN (resp. the rank condition), but the strong
rank condition was not mentioned. Recently, (private communication), T. Y. Lam provided
a proof also for this missing case. The proof starts with the above lemma, has “right SRC”
instead of “(right) dependent”, and continues with an inclusion Sm ⊆ Sn . Our proof above
just replaces n by 1.

Corollary 12 Matrix rings over commutative rings are dependent.

Proof The statement follows from the previous theorem. Here is a direct proof.
For two given matrices A, B ∈ Mn(R) over a commutative ring R, the equation AS +

BT = 0 amounts to a homogeneous linear system with n2 equations and 2n2 unknowns. It
is well-known (see N. McCoy theorem, 5.3 in [4] and corollary 5.9) that such systems have
infinitely many solutions, and so also nonzero solutions. 
�

The previous theorem yields also a large amount of dependent matrix rings over
noncommutative rings.

Corollary 13 Let R be a ring and S = Mn(R) for some n > 1. The matrix ring S is dependent
in each of the following cases:

(i) R is a division ring; R is local; R is Boolean; R is finite;
(ii) R is right (or left) Artinian; R is unit-regular; R is right Noetherian; R has finite

uniform dimension.

Proof As for the last two examples, see the remark before Proposition 25. 
�
For (upper) triangular matrices we can prove the following

Theorem 14 Triangular matrix rings over dependent rings are dependent.

Proof To simplify the writing, we discuss the n = 2 case, that is, for a dependent ring R we
consider A, B, S, T ∈ T2(R).

For A =
[
a a′
0 a′′

]
, B =

[
b b′
0 b′′

]
and S = [si j ], T = [ti j ] we have

AS + BT =
[
as11 + bt11 as12 + a′s22 + bt12 + b′t22

0 a′′s22 + b′′t22

]
.

By dependence of R, there exist s11, t11 not both zero with as11 + bt11 = 0. Choosing zero
all the other entries in S and T gives AS + BT = 02 and we cannot have both S = T = 02.

Remarks (1) This way, it also follows that Tn(R) is a dependent subring of Mn(R), for any
dependent ring R.

(2) The special case of triangular matrices over commutative rings can also be settled
using McCoy’s theorem: For two given matrices A, B ∈ Tn(R) over a commutative ring R,

the equation AS + BT = 0 amounts to a homogeneous linear system with

(
n(n + 1)

2

)2

equations and 2

(
n(n + 1)

2

)2

unknowns.
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Since we intend to use Hagany-Varadarajan results (see [7]), for convenience, we now
state and prove properties for formal (lower) triangular matrix rings.

Proposition 15 Let T =
[
A 0
M B

]
be a formal triangular ring with A, B rings and BMA, a

bimodule.
(1) If B is right dependent so is T .
(2) If A is left dependent so is T .
(3) If A is right dependent, T may not be right dependent.

Proof (1) Let

[
a 0
m b

]
,

[
a′ 0
m′ b′

]
∈ T . Since B is right dependent there are s, s′ ∈ B

not both zero, such that bs + b′s′ = 0. Therefore

[
a 0
m b

] [
0 0
0 s

]
+

[
a′ 0
m′ b′

] [
0 0
0 s′

]
=[

0 0
0 bs + b′s′

]
= 0, with

[
0 0
0 s

]
and

[
0 0
0 s′

]
not both zero.

(2) If A is left dependent, there are s, s′ ∈ A not both zero, with sa + s′a′ = 0. Now[
s 0
0 0

] [
a 0
m b

]
+

[
s′ 0
0 0

] [
a′ 0
m′ b′

]
=

[
sa + s′a′ 0

0 0

]
= 0, with

[
s 0
0 0

]
and

[
s′ 0
0 0

]
not both

zero.
(3) An example is given (below) in the proof of Proposition 24. 
�

Remark It is easy to check that two (arbitrary) matrices are right (or left) dependent iff their
transposes are left (resp. right) dependent. However, for lower triangular matrices, we cannot
use this since the transpose gives an upper triangular matrix.

Next, we have another useful

Lemma 16 Let a, b ∈ R with aR ∩ bR 	= {0}. Then a and b are dependent. If a and b are
not left zero divisors, the converse also holds.

Proof Obviously a, b 	= 0 and both implications follow from definitions. 
�
Therefore

Proposition 17 For a domain R the following conditions are equivalent
(i) R is (right) dependent;
(ii) R has the right SRC;
(iii) R is right Ore;
(iv) for every nonzero a, b ∈ R, aR ∩ bR 	= {0}.

Proof Since (ii) ⇔ (iii) is Exercise 21 in §10, [9], and (iii) ⇔ (iv) is 10.19 [9], it suffices to
check (i) ⇔ (iv).

This follows from the previous lemma since 0 is absolutely dependent in any ring. 
�
In closing the constructions discussion, recall that if R is a right Ore domain then so is

the polynomial ring R[x].
Proposition 18 If R[x] is dependent then R is dependent. The converse fails.

Proof Let a, b ∈ R. By hypothesis, there exist s(x) = s0 + s1x + ... + smxm , t(x) =
t0 + t1x + ... + tnxn not both zero, such that as(x) + bt(x) = 0. Assume (say) m ≤ n. Then
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as0 + bt0 = 0, as1 + bt1 = 0,..., asm + btm = 0 and btm+1 = ... = btn = 0. Since all
coefficients si , t j cannot be zero, a, b are dependent.

Conversely, in [5], it is proved that if R[x] right (or left) Ore then R is Dedekind finite.
Thus, for any Ore ring R (e.g., a von Neumann regular ring) that is not Dedekind finite,
R[x] fails to be right or left Ore. Specializing to domains and using Proposition 17, for any
dependent ring that is not Dedekind finite, R[x] fails to be dependent. 
�

Note that the failure of the converse requires a dependent ring that is not DF. Such an
example is H, the last section.

Proposition 19 If R[[x]] is dependent so is R. The converse fails.

Proof Similar to the previous proposition. According to Proposition 17, Kerr’s example (i.e.,
a right Ore domain such that the power series ring R[[x]] is not a right Ore domain, see [8])
is a (right) dependent domain whose power series ring is not (right) dependent. 
�

3 Refinements

In what follows we delimit the class of dependent rings by the class of (right) SRC rings and
some class of rings (denoted IBN1) which includes the IBN rings.

Since this will be useful for our subject, we first propose the following refinements for
the SRC, the RC and the IBN properties.

Definitions For any given n ≥ 1, we say that:
R has right SRCn iff every n+1 elements of (Rn)R are dependent iff any set of independent

elements of (Rn)R has cardinality ≤ n iff m ≤ n whenever an R-monomorphism Rm → Rn

exists.
R has right RCn iff every set of generators of (Rn)R has at least n elements iff m ≤ n

whenever an R-epimorphism Rn → Rm exists.
R has IBN n iff for every m, (Rm)R ∼= (Rn)R implies m = n iff (Rn)R has rank n.
Thus R has SRC (or RC or IBN) iff for every n ≥ 1, R has SRCn (resp. RCn, resp. IBNn).

Therefore

Proposition 20 If R satisfies the right strong rank condition then R is (right) dependent.

Proof As follows from the above paragraph, R is dependent iff R satisfies the right SRC1. 
�
Remark Since nonzero right Noetherian rings and rings with finite uniform dimension satisfy
the right SRC (see [9] 1.35 and 1.37), these are also examples of right dependent rings.

It is easy to see that

Proposition 21 For any n ≥ 1 and any ring R, SRCn+1 ⇒ SRCn.

Proof Suppose R does not satisfy SRCn . There exists m > n and a monomorphism α :
Rm → Rn .

If m > n + 1, we get a monomorphism Rm → Rn → Rn+1 by composition with the
canonical injection Rn → Rn+1.

If m = n + 1, we get a monomorphism Rn+2 → Rn+1 by taking the product α × 1R :
Rn+1 × R → Rn × R.

In both cases, R does not satisfy SRCn+1. 
�
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Therefore,
... ⇒ SRCn+1 ⇒ SRCn ⇒ ... ⇒ SRC2 ⇒ SRC1

with SRC1 being precisely the (right) dependence condition.
Similarly,

Proposition 22 For any n ≥ 1 and any ring R, RCn+1 ⇒ RCn.

Therefore,
... ⇒ RCn+1 ⇒ RCn ⇒ ... ⇒ RC2 ⇒ RC1

and (right) dependent rings (i.e. SRC1 rings) satisfy RC1.

Remarks (1) Note that a ring does not satisfy SRC1 iff there exists an R-monomorphism
R2 → R. Indeed, if there exists an R-monomorphism Rm → R for some m > 1, the
composition with the inclusion R2 → Rm gives an R-monomorphism R2 → R. Similar
characterizations hold for each SRCn .

(2) Analogously, a ring does not satisfy RC1 iff there exists an R -epimorphism R → R2.
Indeed, if for some m > 1 there exists an R-epimorphism R → Rm , the composition with
the projection of Rm onto R2 gives an R-epimorphism R → R2. Similar characterizations
hold for each RCn .

While (S)RCk ⇒ (S)RCl whenever k ≤ l, this fails for the IBN refinements.

Proposition 23 If k ≤ l, IBNk ⇒ IBNl fails.

Proof (G. Bergman). From [2], it follows that given any congruence C on the additive semi-
group of positive integers, there is a ring R such that Rm ∼= Rn ⇔ (m, n) ∈ C (where ∼=
means isomorphism as left, equivalently, as right modules). So for every k, there is a ring R
for which Rm ∼= Rn iff either m = n, or m and n are both > k. 
�

Hence, none of IBN1 ⇒ IBN2, IBN2 ⇒ IBN3, and so on, holds.
Note that, for any n > 0, the class of rings which have IBNn includes the class of rings

which have IBN. Rephrasing, the IBN property is the (logical) conjunction of all the IBNn

properties. As such, IBN implies every IBNn , for any n > 0.

Proposition 24 Dependent rings have IBN1, that is, have a rank and this rank is 1. The
converse fails.

Proof In any ring R, {1} is a basis for RR (or R R). In a dependent ring, independent sets with
at least two elements, do not exist, so dependent rings have a rank, and this is 1. Hence every
dependent ring has IBN1, which is larger than IBN.

Conversely, in an IBN ring, independent elements may exist which do not span the whole
ring, that is, IBN rings may not be dependent. For an example we take advantage of results
obtained in [7]. In turn, they use an example obtained by J. Kerr (1982, [8]), that is, a right
Ore domain R with R[[X ]] not right Ore. For this Ore domain, in [7] it is proved (Proposition

4.4) that T =
[

R 0
R[[X ]] R[[X ]]

]
does not satisfy the right SRC.

In the proof, a pair (α, β) with β : R[[X ]]2 → R[[X ]] injective in Mod-R[[X ]], α :
R2 ⊕ R[[X ]]2 → R ⊕ R[[X ]] injective in Mod-R, gives rise to an injective map T 2 → T
in Mod-T . This shows that T does not satisfy the right SRC1 in Mod-T , so T is not right
dependent. However, according to Proposition 4.1 (see [7]), T has IBN iff one of A, B has
it. Hence, it follows that the T constructed above has IBN (and so also IBN1) but is not right
dependent. 
�
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Question Are dependent rings also IBN? In particular, are dependent rings, IBN2 ?Apositive
answer amounts to: SRC1 ⇒ IBN2.

As the referee pointed out, by Remark 3.17 of [1], the Leavitt path algebra LK (E) of a
finite graph E over a field K has IBN iff LK (E) has IBN1. Then, by the previous proposition,
we obtain that if LK (E) is dependent, then LK (E) has IBN.

Moreover, if LK (E), which was introduced in Example 3.8 of [12], is dependent, this
would give a negative answer for the Question.

Proposition 25 For every n, SRCn implies RCn.

Proof By the universal property of the free R-module Rn , every epimorphism α : Rn → Rm

splits, i.e., there is a monomorphism β : Rm → Rn such that α ◦ β = 1Rn . By SRCn ,
m ≤ n. 
�
Proposition 26 For every n, RCn implies IBNn.

Proof Suppose a ring R has not IBNn . There exists an isomorphism α : Rm → Rn with
m 	= n. If m > n, α−1 : Rn → Rm is (also) an epimorphism and so R does not satisfy RCn .
If m < n, α : Rm → Rn is (also) an epimorphism. Then α × 1Rn−m : Rn → R2n−m is an
epimorphism and since 2n − m > n, R does not satisfy RCn . 
�
Corollary 27 For every n, SRCn implies IBNn.

For n = 1, this gives an alternative proof for the first statement in Proposition 24.
Hence so far we have {rings with the right SRC}⊆ {right dependent rings}⊆ {rings with

IBN1}.
The right inclusion is strict by the Proposition 24. To give an example which shows that

the left inclusion is strict (that is, with SRC1 but not SRC2) seems to be harder. This example
would be a part of a larger project which is not addressed here: to show (by suitable examples)
that all the refinements introduced in this section are different.

4 Special examples

We start with a construction (G. Bergman) which will be useful.

Proposition 28 Let A be a ring which is not dependent and let B be an over-ring such that
every pair of elements of A is dependent over B; i.e., for all a, a′ ∈ A, there are b, b′ ∈ B,
not both zero, such that ab + a′b′ = 0. Adjoin to B a central square-zero element ε, and,
within B[ε], consider the subring R = A + εB. Then R is a dependent ring.

Proof Let x1 = a1 + εb1 and x2 = a2 + εb2 (a1, a2 ∈ A, b1, b2 ∈ B) be two elements of R.
If a1 = 0, then we have the linear relation x1ε + x20 = 0, and similarly if a2 = 0. If a1 and
a2 are both nonzero, then by hypothesis there is a nontrivial relation a1b1 + a2b2 = 0 in B.
This yields the relation a1(εb1) + a2(εb2) = 0 and so x1(εb1) + x2(εb2) = 0 in R. 
�

Note that this construction shows that every not dependent ring can be embedded in a
dependent ring.

With some exceptions (direct products, formal matrix rings, polynomial rings and power
series rings were discussed in the previous section), dependent rings behave badly with
respect to Ring Theory constructions.
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This is (mainly) because ring homomorphisms do not preserve nor reflect dependence.
Neither do surjective (or injective) ring homomorphisms.

A. A subring of a dependent ring need not be dependent.
Clearly, two elements could be independent in a subring (having “less scalars”) but depen-

dent in the whole ring. So subrings of dependent rings may not be dependent. For an example
we just use the previous proposition: R is dependent but its subring A is not.

Corners of (unit) regular rings are (unit) regular. In Corollary 3. 12 of [12] it was showed
that a corner of a IBN ring may not have IBN.

In Theorem 3.9 of [1], LK (R) has RC. This shows that corners of rings with RC have no
RC in general.

There seem to be no results about corners of rings with right (or left) SRC.

Question Are corners of dependent rings, also dependent ?
Hint. As the referee pointed out, the following example could answer the question in the

negative. Let K be a field and E the following graph:

E =
�

•v −→
�

•u
�

We then have that the corner uLk(E)u is isomorphic to the Leavitt algebra LK (1, 2), and
so uLK (E)u is neither dependent nor has RC. If LK (E) is dependent then this shows that
corners of dependent rings may not be dependent. This would also answer in the negative the

Question Are dependent rings Morita invariant?
Note that IBN is not a Morita invariant property (see Example 11, p. 502, [9]).

B. A dependent ideal of an independent ring.

We have already mentioned that if D is a division ring, V =
∞⊕
i=1

ei D and E = End(VD),

then E is not dependent (having independent endomorphisms). It is (maybe) less known that
E has only one nontrivial (i.e. 	= 0 and 	= E) ideal (see Exercise 3.15 [9]): the set F of all
finite rank endomorphisms. That is, F = { f ∈ E : dimD f (V ) < ∞} is (also) the unique
maximal ideal of E .

We can show that F is dependent. Suppose f , g ∈ E , dimD( f (V )) = m and
dimD(g(V )) = n and m ≤ n. We can identify f , g with some n × n matrices over D.
As such these are dependent (by Corollary 13).

C. Ring monomorphisms do not reflect dependence (i.e., if f : R → R′ is a ring
monomorphism and R′ is dependent, R may not be dependent).

In Proposition 28, just consider the inclusion i : A → R. There R is dependent but A is
not.

D.Ring epimorphisms do not reflect dependence. Equivalently, homomorphic images (and
so quotient rings) of independent rings may be dependent.

Actually, clearly, two elements could be dependent in a ring but their cosets in a quotient
ring could be independent (again, having “less scalars”).

For an example, consider (1.31 [9]) R, the free algebra k 〈X〉 generated over a field k by
a set X with |X | ≥ 2. If x 	= y in X , then in the right regular module RR the elements
{u j = x j y : 0 ≤ j < ∞} are (right) independent. We can map R onto k, and k is dependent
but R is not.

E. For any ring R, the property “R is dependent” and the property “R is regular”, are
(logically) independent.

The next three examples are justified since unit-regular rings are dependent and regular.
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(a) Regular rings need not be dependent.
An example of regular ring that is not dependent is well-known from long time ago (see

[3], Exercise 8, 1955): the ring E in example B is (von Neumann) regular and includes
independent linear transformations.

(b) Dependent rings need not be regular.
It suffices to give an example of commutative ring which is not regular. Since regular rings

are reduced, for any prime p, Z(p2) is not regular.
As for an infinite example, for any field k, we can take k[x]/x2.
As a matrix ring example, if R is a commutative ring which is not regular and n ≥ 1 then,

by Proposition 12, Mn(R) is dependent but not regular
(c) A regular dependent ring need not be unit-regular.

For any field k consider the triangular matrix ring T2(k) =
[
k k
0 k

]
. According to Propo-

sition 14, T2(k) is dependent and since k is regular, so is T2(k). However, T2(k) is not

unit-regular. Indeed A =
[
0 1
0 0

]
is not unit-regular since AT2(k)A = 02.

F. An example of left dependent ring which is not right dependent.
It is well-known that the IBN property is left-right symmetric but the strong rank condition

is not. The example used in order to show, via left and right Ore domains, that the strong
rank condition for rings is not left-right symmetric (see second paragraph of 10C) is also
suitable for our purpose.

Using twisted polynomial rings, let σ be an endomorphism of a division ring R and
S = R[x; σ ]. Then S is left Ore and, by Proposition 17, is also left dependent.

If σ(R) 	= R, say t ∈ R�σ(R) then {1, t} are right (linearly) independent over σ(R).
Then {x, t x} are right (linearly) independent over S, so S is not right Ore nor right dependent
.

G. Right (or left) dependent rings need not be clean, nor exchange.
Such an example is justified since unit-regular rings are clean and (so) exchange.
However, Z is not exchange, but being commutative, is left and right dependent.
In contrast with unit-regular rings, commutative rings and right (or left) Noetherian rings

which all are Dedekind finite, here is
H. A dependent ring which is not Dedekind finite.
We use Shepherdson’s (see [13]) example of domain (and so DF ring) R such that M2(R)

is not DF. Since according to Theorem 11, M2(R) is dependent iff R is dependent, it only
remains to check that this domain R, is dependent. Equivalently (by Proposition 17), to verify
aR ∩ bR 	= {0}, for every nonzero a, b ∈ R.

This can be done using bringing the elements of R to a “normal form”. To have all details,
we direct the reader to the solution of Exercise 1.18, [10].
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