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Abstract

In this communication we give partial results concerning the determination

of the abelian W0-groups.

1 Introduction

Definition. Let A, R be two rings, DA and GR be full subcategories of Mod − A
respectively Mod− R.

An equivalence GR

G
−→
←−
F

DA is called representable by the bimodule APR if

G ∼ H = HomR(PR,−)|GR
and F ∼ T = (−⊗A P )|DA.

Definition. Gen(PR) denotes the subcategory of Mod − R generated by PR

[M ∈ Gen(PR) iff there is an exact sequence P
(X)
R → M → 0 with a set X].

Definition. Let PR ∈ Mod − R and A = End(PR). We call PR a W0-module
(after Ricardo, W is for Wisbauer) if the bimodule APR represents an equivalence
between Gen(PR) and Im(H) [subcategory in Mod −A].

The interest for representable equivalences between categories of modules is con-
siderable and comes back to the classical results of Morita (1958) and Fuller (1974)
but is continued also now-a-days by the intense study of particular W0-modules
named *-modules and tilting modules.

*
In 1995, Prof. Adalberto Orsatti suggested me the determination of the W0-

abelian groups, that is, the study of the W0-modules in the case R = Z.
Not being at all ”at home” in this domain, I simply put this problem in a drawer

and forgot it.

∗This research was completed in the Universita degli Studi di Padova under a Nato-CNR

fellowship.
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Having the wonderful opportunity of being in Padova, 1 month and a half before
this special Conference I decided that results concerning the problem he stated for
me should naturally frame here.

The results I want to present today are respectfully dedicated to the 60-th an-
niversary of the birthday of the ”maestro”.

*
In what follows G will always denote an arbitrary abelian group, Ab will denote

the category of all the abelian groups and group homomorphisms and Gen(G) de-
notes the full subcategory of Ab generated by G (i.e. direct sums of G and factor
groups of such direct sums).

G is called a W0-group if the bimodule EGZ represents an equivalence between
Gen(G) (right Z-modules) and Im(H) (right E-modules) where E = EndZ(G) and
H = HomZ(GZ,−) , in fact an adjoint equivalence together with the corresponding
restriction of −⊗E G.

Hence, G is a W0-group iff the restriction of the functor H to Gen(G) is full and
faithful, that is, for each H, K ∈ Gen(G) the group homomorphisms
HH,K

G : HomZ(H, K)→ HomE(HomZ(G, H), HomZ(G, K))
are isomorphisms. Indeed if H|Gen(G) : Gen(G) → Im(H) is full and faithfull

(and obviously surjective on objects) it induces an adjoint equivalence with identical
unity.

The following characterization of the W0-groups from [2] will also be used: G is
a W0-group iff for each group H the canonical group homomorphism (arising from
the counity of the above adjoint equivalence)

ρH : HomZ(G, H)⊗E G→ H is injective (here ρH(f ⊗ x) = f(x)).

2 Examples and reductions

First let us provide some easy examples and counterexamples of W0-groups:
All the cyclic and cocyclic groups are W0-goups.
1) Indeed: for Z, for each group H , ρH : HomZ(Z, H) → H is essentially 1Z

(modulo some canonical isomorphisms) and for Zn in a similar way ρH is essentially
the inclusion of H [n] into H . More generally, Z(n) is surely a finitely generated
projective generator in Mod − Z and so this is also a W0-group, using the classical
result of Morita (see [4]).

2) A classical result of [3] shows (using homological methods) that Q/Z is a

W0-group.
3) Using results of Onodera , one can show that finitely generated torsion groups

such that each p-component is a direct sum of cyclic groups of the same order pn

are W0-groups.

4) Q is not a W0-group.
Using the definition one has to choose H, K ∈ Gen(Q) in order to find a non-

isomorphism of groups
HH,K

Q : Hom(H, K)→ HomE(Hom(Q, H), Hom(Q, K)) for E = End(Q) ∼= Q.
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Indeed, for H = Z(p∞), K = Q surely Hom(H, K) = 0 but
HomE(Hom(Q,Z(p∞)), Hom(Q,Q)) ∼= HomQ(

⊕

λ

Q,Q) ∼=
∏

λ

Q 6=0.

3 Results

Being confronted with an entire new class of abelian groups, I first tried to obtain
the well-known reductions for abelian groups.

That is I first proved the following

Theorem 3.1 Let G be a torsion group. G is a W0-group iff for all prime number
p the p-components Gp are W0–groups.

The proof is based on an elementary

Lemma 3.1 Let Ri be a family of rings with identity, Ai a family of corresponding
right Ri-modules, Bi a family of corresponding left Ri-modules and let

∏

i∈I

Ri be the

direct product of rings. Then the map

σ : (
∏

i∈I

Ai) ⊗∏

i∈I

Ri
(
⊕

i∈I

Bi) →
⊕

i∈I

(Ai ⊗Ri
Bi) defined as σ((ai)i∈I ⊗ (bi)i∈I) =

∑

i∈I

(ai ⊗ bi) is a canonical group isomorphism.2

Indeed this result enables us to prove the following reduction

Theorem 3.2 Let G =
⊕

i∈I

Hi and Ei = End(Hi). If for each H ∈ Ab

ρ̄H : HomZ(
⊕

i∈I

Hi, H) ⊗∏

i∈I

Ei
(
⊕

i∈I

Hi) → H defined as ρH(f ⊗ x) = f(x) are

monomorphisms, then Hi are W0-groups.2

Consequence 3.1 Let G =
⊕

i∈I

Hi and Hi be fully invariant subgroups of G. If G

is W0-group then all the Hi are W0-groups too.

Indeed, one has only to remaind that for fully invariant direct summands Hi of G,
there is a canonical ring isomorphism End(G) ∼=

∏

i∈I

End(Hi) and so the condition

in the previous theorem is equivalent to ρH : HomZ(G, H) ⊗E G → H defined by
ρH(f ⊗ x) = f(x), are monomorphisms.2

Remark 3.1 Unfortunately, even for fully invariant subgroups the converse of this
consequence in not true.

Indeed, if all the ρ
(i)
H : HomZ(Hi, H) ⊗Ei

Hi → H are monomorphisms, the
corresponding factorizations through the direct sums ρH :

⊕

i∈I

(HomZ(Hi, H) ⊗Ei

Hi) → H need not to be monomorphisms (e.g. if i 6= j does not imply im(ρ
(i)
H ) ∩

im(ρ
(j)
H ) = 0).
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Remark 3.2 In fact this is essential for a direct sum: how
∏

i∈I

End(Hi) embeds (as

a subring) in End(
⊕

i∈I

Hi).

*
However if I is the set of all the prime numbers and G =

⊕

p∈P

Gp (the p-

components) then ρ
(p)
H : HomZ(Gp, H) ⊗Ep

Gp → H being defined by ρ
(p)
H (f ⊗

x) = f(x), ∀f ∈ HomZ(Gp, H), ∀x ∈ Gp and so im(ρ
(p)
H ) ⊆ Hp so that for each

H ∈ Ab the above condition holds. Hence ρH :
⊕

p∈P

(HomZ(Gp, H)⊗Ep
Gp)→ H are

monomorphisms.2

Consequence 3.2 Z(p∞) is a W0-group.

Indeed, Q/Z =
⊕

p∈P

Z(p∞) and one uses example 2.

Consequence 3.3 For each fixed n ∈ N∗,
⊕

p∈P

Zpn are other examples of non-finitely

generated W0-group. [each *-group is finitely generated, see [8]]

*
One sees immediately that the class of the W0-groups has not a good behaviour

towards direct sums. [see also bellow].
Using only the definition of the W0-groups [but the proofs contain very long

computations] I finally proved the following three results

Proposition 3.1 Let n ∈ N∗. A group G is a W0-group iff G(n) is a W0-group too.

Using the above consequence and example 5 we immediately obtain

Consequence 3.4 An finite direct sum of Z(p∞) is a W0-group.2

Consequence 3.5 A finite direct sum
⊕

n

Q is not a W0-group

The above results can be rephrased as

Consequence 3.6 (a) A divisible torsion group of finite rank D is always a W0-
group. (b) A divisible torsion-free group of finite rank is not a W0-group.

(a) Indeed, if D is a divisible torsion group of finite rank each p-component has
the form

⊕

n

Z(p∞) and hence is a W0-group. But then D is a W0-group too (by

Theorem 2.2).2
I thought that a divisible group of finite rank is a W0-group iff it is torsion, but

the tilting example Q/Z⊕Q [or Z(p∞) ⊕ Q] in the conference of Prof.Wiesbauer
showed me that this is not true.

*
The following result gives us a large class of abelian W0-groups
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Theorem 3.3 For an arbitrary group G the group G⊕ Z is always a W0-group.2

Consequence 3.7 Q(n)⊕Z is a W0-group.

*

Theorem 3.4 If G is a group bounded by n ∈ N∗ then G ⊕ Zn is always a W0-
group.2

Consequence 3.8 Q(m) ⊕ Zn is a W0-group.

Remark 3.3 So the direct sum of a W0-group with a non-W0-group can be a W0-
group! [already seen in Wiesbauer example].

*
Finally we have

Consequence 3.9 Each direct sum
∑

of cyclic groups with bounded p-components
is a W0-group.

Indeed, if
∑

is torsion we apply the previous theorem to p-components and
theorem 3.1. If

∑
is not torsion, it has a Z direct summand and we apply theorem

3.3.2

Consequence 3.10 Each finitely generated group is a W0-group.2

Remark 3.4 Using as start the example of Prof. Wiesbauer perhaps a result of the
same kind for direct sums G⊕ Z(p∞) could also hold.

4 Final Comments

Surely, to determine the structure of all the W0-groups seems not a simple problem.
But there is obviously another problem naturally connected with: to determine for
each W0-group the corresponding category of modules, i.e. Im(H) (that is, to point
out the precise equivalences obtained in this way).

Finally we list some easy examples.
If G = Z then surely Gen(Z) = Ab and so is Im(H) (here E = End(Z) ∼= Z)

(indeed, Z is a projective generator in Ab).
If G = Zn then Gen(Zn) = {G ∈ Ab|nG = 0} and so is Im(H) (and moreover,

both are varieties) and these n-bounded groups are naturally considered as Zn-
modules.

If G = Z(p∞) a result already mentioned of [3] shows that H provides an equiv-
alence between Gen(Z(p∞)) which is the subcategory of Ab of all the divisible p-
groups and Im(H) which is exactly the category of all the cotorsion torsion-free
Jp-modules.

If G = Q then Gen(Q) contains all the torsion-free divisible groups and their
factor groups (hence contains also a lot of torsion divisible groups) and Im(H)
contains Q-modules (here E = End(Q) ∼= Q) which are - as groups - torsion-free.
This clarifies somewhat the counterexample from section 2.
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