On a problem of Prof.A.Orsatti *

Grigore Călugăreanu

Communication presented to the Algebra Conference for the 60^{th} birthday of Adalberto Orsatti (june 1997)

Abstract

In this communication we give partial results concerning the determination of the abelian W_0 -groups.

1 Introduction

Definition. Let A, R be two rings, \mathcal{D}_A and \mathcal{G}_R be full subcategories of Mod - A respectively Mod - R.

An equivalence $\mathcal{G}_R \xrightarrow{\longrightarrow} \mathcal{D}_A$ is called **representable** by the bimodule ${}_AP_R$ if F

 $G \sim H = Hom_R(P_R, -)|_{\mathcal{G}_R}$ and $F \sim T = (- \otimes_A P)|_{\mathcal{D}_A}$.

Definition. $Gen(P_R)$ denotes the subcategory of Mod - R generated by P_R $[M \in Gen(P_R)$ iff there is an exact sequence $P_R^{(X)} \to M \to 0$ with a set X].

Definition. Let $P_R \in Mod - R$ and $A = End(P_R)$. We call P_R a W_0 -module (after Ricardo, W is for Wisbauer) if the bimodule ${}_AP_R$ represents an equivalence between $Gen(P_R)$ and Im(H) [subcategory in Mod - A].

The interest for representable equivalences between categories of modules is considerable and comes back to the classical results of Morita (1958) and Fuller (1974) but is continued also now-a-days by the intense study of particular W_0 -modules named *-modules and tilting modules.

In 1995, Prof. Adalberto Orsatti suggested me the determination of the W_0 -abelian groups, that is, the study of the W_0 -modules in the case $R = \mathbb{Z}$.

Not being at all "at home" in this domain, I simply put this problem in a drawer and forgot it.

^{*}This research was completed in the Universita degli Studi di Padova under a Nato-CNR fellowship.

Having the wonderful opportunity of being in Padova, 1 month and a half before this special Conference I decided that results concerning the problem he stated for me should naturally frame here.

The results I want to present today are respectfully dedicated to the 60-th anniversary of the birthday of the "maestro".

*

In what follows G will always denote an arbitrary abelian group, Ab will denote the category of all the abelian groups and group homomorphisms and Gen(G) denotes the full subcategory of Ab generated by G (i.e. direct sums of G and factor groups of such direct sums).

G is called a W_0 -group if the bimodule ${}_EG_{\mathbf{Z}}$ represents an equivalence between Gen(G) (right **Z**-modules) and $Im(\mathcal{H})$ (right *E*-modules) where $E = End_{\mathbf{Z}}(G)$ and $\mathcal{H} = Hom_{\mathbf{Z}}(G_{\mathbf{Z}}, -)$, in fact an adjoint equivalence together with the corresponding restriction of $-\otimes_E G$.

Hence, G is a W_0 -group iff the restriction of the functor \mathcal{H} to Gen(G) is full and faithful, that is, for each $H, K \in Gen(G)$ the group homomorphisms

 $\mathcal{H}_{G}^{H,K}: Hom_{\mathbf{Z}}(H,K) \to Hom_{E}(Hom_{\mathbf{Z}}(G,H), Hom_{\mathbf{Z}}(G,K))$

are isomorphisms. Indeed if $\mathcal{H}|_{Gen(G)} : Gen(G) \to Im(\mathcal{H})$ is full and faithfull (and obviously surjective on objects) it induces an adjoint equivalence with identical unity.

The following characterization of the W_0 -groups from [2] will also be used: G is a W_0 -group iff for each group H the canonical group homomorphism (arising from the counity of the above adjoint equivalence)

 $\rho_H : Hom_{\mathbf{Z}}(G, H) \otimes_E G \to H$ is injective (here $\rho_H(f \otimes x) = f(x)$).

2 Examples and reductions

First let us provide some easy examples and counterexamples of W_0 -groups:

All the cyclic and cocyclic groups are W_0 -goups.

1) Indeed: for \mathbf{Z} , for each group H, $\rho_H : Hom_{\mathbf{Z}}(\mathbf{Z}, H) \to H$ is essentially $\mathbf{1}_{\mathbf{Z}}$ (modulo some canonical isomorphisms) and for \mathbf{Z}_n in a similar way ρ_H is essentially the inclusion of H[n] into H. More generally, $\mathbf{Z}^{(n)}$ is surely a finitely generated projective generator in $Mod - \mathbf{Z}$ and so this is also a W_0 -group, using the classical result of Morita (see [4]).

2) A classical result of [3] shows (using homological methods) that \mathbf{Q}/\mathbf{Z} is a W_0 -group.

3) Using results of Onodera , one can show that finitely generated torsion groups such that each p-component is a direct sum of cyclic groups of the same order p^n are W_0 -groups.

4) **Q** is not a W_0 -group.

Using the definition one has to choose $H, K \in Gen(\mathbf{Q})$ in order to find a nonisomorphism of groups

 $\mathcal{H}_{\mathbf{Q}}^{H,K}: Hom(H,K) \to Hom_E(Hom(\mathbf{Q},H), Hom(\mathbf{Q},K)) \text{ for } E = End(\mathbf{Q}) \cong \mathbf{Q}.$

Indeed, for $H = \mathbf{Z}(p^{\infty}), K = \mathbf{Q}$ surely Hom(H, K) = 0 but $Hom_E(Hom(\mathbf{Q}, \mathbf{Z}(p^{\infty})), Hom(\mathbf{Q}, \mathbf{Q})) \cong Hom_{\mathbf{Q}}(\bigoplus_{\lambda} \mathbf{Q}, \mathbf{Q}) \cong \prod_{\lambda} \mathbf{Q} \neq 0.$

3 Results

Being confronted with an entire new class of abelian groups, I first tried to obtain the well-known reductions for abelian groups.

That is I first proved the following

Theorem 3.1 Let G be a torsion group. G is a W_0 -group iff for all prime number p the p-components G_p are W_0 -groups.

The proof is based on an elementary

Lemma 3.1 Let R_i be a family of rings with identity, A_i a family of corresponding right R_i -modules, B_i a family of corresponding left R_i -modules and let $\prod R_i$ be the

direct product of rings. Then the map

$$\sigma : (\prod_{i \in I} A_i) \otimes \prod_{i \in I} R_i (\bigoplus_{i \in I} B_i) \to \bigoplus_{i \in I} (A_i \otimes_{R_i} B_i) \text{ defined as } \sigma((a_i)_{i \in I} \otimes (b_i)_{i \in I}) =$$

 $\sum_{i \in I} (a_i \otimes b_i) \text{ is a canonical group isomorphism.} \square$

Indeed this result enables us to prove the following reduction

Theorem 3.2 Let
$$G = \bigoplus_{i \in I} H_i$$
 and $E_i = End(H_i)$. If for each $H \in Ab$

$$\bar{\rho}_H : Hom_{\mathbf{Z}}(\bigoplus_{i \in I} H_i, H) \otimes \prod_{i \in I} E_i (\bigoplus_{i \in I} H_i) \to H \text{ defined as } \bar{\rho}_H(f \otimes x) = f(x) \text{ are}$$

monomorphisms, then H_i are W_0 -groups. \Box

Consequence 3.1 Let $G = \bigoplus_{i \in I} H_i$ and H_i be fully invariant subgroups of G. If G is W_0 -group then all the H_i are W_0 -groups too.

Indeed, one has only to remaind that for fully invariant direct summands H_i of G, there is a canonical ring isomorphism $End(G) \cong \prod_{i \in I} End(H_i)$ and so the condition in the previous theorem is equivalent to $\rho_H : Hom_{\mathbf{Z}}(G, H) \otimes_E G \to H$ defined by $\rho_H(f \otimes x) = f(x)$, are monomorphisms. \Box

Remark 3.1 Unfortunately, even for fully invariant subgroups the converse of this consequence in not true.

Indeed, if all the $\rho_H^{(i)}$: $Hom_{\mathbf{Z}}(H_i, H) \otimes_{E_i} H_i \to H$ are monomorphisms, the corresponding factorizations through the direct sums $\overline{\rho}_H : \bigoplus_{i \in I} (Hom_{\mathbf{Z}}(H_i, H) \otimes_{E_i} H_i)$

 $H_i) \to H$ need not to be monomorphisms (e.g. if $i \neq j$ does not imply $im(\rho_H^{(i)}) \cap im(\rho_H^{(j)}) = 0$).

Remark 3.2 In fact this is essential for a direct sum: how $\prod_{i \in I} End(H_i)$ embeds (as

a subring) in $End(\bigoplus_{i\in I} H_i)$.

However if I is the set of all the prime numbers and $G = \bigoplus_{p \in \mathbf{P}} G_p$ (the pcomponents) then $\rho_H^{(p)} : Hom_{\mathbf{Z}}(G_p, H) \otimes_{E_p} G_p \to H$ being defined by $\rho_H^{(p)}(f \otimes x) = f(x), \forall f \in Hom_{\mathbf{Z}}(G_p, H), \forall x \in G_p$ and so $im(\rho_H^{(p)}) \subseteq H_p$ so that for each $H \in Ab$ the above condition holds. Hence $\overline{\rho}_H : \bigoplus_{p \in \mathbf{P}} (Hom_{\mathbf{Z}}(G_p, H) \otimes_{E_p} G_p) \to H$ are monomorphisms \Box

monomorphisms. \Box

Consequence 3.2 $Z(p^{\infty})$ is a W_0 -group.

Indeed, $\mathbf{Q}/\mathbf{Z} = \bigoplus_{p \in \mathbf{P}} \mathbf{Z}(p^{\infty})$ and one uses example 2.

Consequence 3.3 For each fixed $n \in \mathbf{N}^*$, $\bigoplus_{p \in \mathbf{P}} \mathbf{Z}_{p^n}$ are other examples of non-finitely generated W_0 -group. [each *-group is finitely generated, see [8]]

*

*

*

One sees immediately that the class of the W_0 -groups has not a good behaviour towards direct sums. [see also bellow].

Using only the definition of the W_0 -groups [but the proofs contain very long computations] I finally proved the following three results

Proposition 3.1 Let $n \in \mathbb{N}^*$. A group G is a W_0 -group iff $G^{(n)}$ is a W_0 -group too.

Using the above consequence and example 5 we immediately obtain

Consequence 3.4 An finite direct sum of $\mathbf{Z}(p^{\infty})$ is a W_0 -group. \Box

Consequence 3.5 A finite direct sum $\bigoplus_{n} \mathbf{Q}$ is not a W_0 -group

The above results can be rephrased as

Consequence 3.6 (a) A divisible torsion group of finite rank D is always a W_0 -group. (b) A divisible torsion-free group of finite rank is not a W_0 -group.

(a) Indeed, if D is a divisible torsion group of finite rank each p-component has the form $\bigoplus_{n} \mathbb{Z}(p^{\infty})$ and hence is a W_0 -group. But then D is a W_0 -group too (by Theorem 2.2). \Box

I thought that a divisible group of finite rank is a W_0 -group iff it is torsion, but the tilting example $\mathbf{Q}/\mathbf{Z} \oplus \mathbf{Q}$ [or $\mathbf{Z}(p^{\infty}) \oplus \mathbf{Q}$] in the conference of Prof.Wiesbauer showed me that this is not true.

The following result gives us a large class of abelian W_0 -groups

Theorem 3.3 For an arbitrary group G the group $G \oplus \mathbb{Z}$ is always a W_0 -group. \Box

Consequence 3.7 $\mathbf{Q}^{(n)} \oplus \mathbf{Z}$ is a W_0 -group.

*

Theorem 3.4 If G is a group bounded by $n \in \mathbf{N}^*$ then $G \oplus \mathbf{Z}_n$ is always a W_0 -group. \Box

Consequence 3.8 $\mathbf{Q}^{(m)} \oplus \mathbf{Z}_n$ is a W_0 -group.

Remark 3.3 So the direct sum of a W_0 -group with a non- W_0 -group can be a W_0 -group! [already seen in Wiesbauer example].

Finally we have

Consequence 3.9 Each direct sum \sum of cyclic groups with bounded p-components is a W_0 -group.

Indeed, if Σ is torsion we apply the previous theorem to *p*-components and theorem 3.1. If Σ is not torsion, it has a **Z** direct summand and we apply theorem 3.3. \Box

Consequence 3.10 Each finitely generated group is a W_0 -group. \Box

Remark 3.4 Using as start the example of Prof. Wiesbauer perhaps a result of the same kind for direct sums $G \oplus \mathbf{Z}(p^{\infty})$ could also hold.

4 Final Comments

Surely, to determine the structure of all the W_0 -groups seems not a simple problem. But there is obviously another problem naturally connected with: to determine for each W_0 -group the corresponding category of modules, i.e. $Im(\mathcal{H})$ (that is, to point out the precise equivalences obtained in this way).

Finally we list some easy examples.

If $G = \mathbf{Z}$ then surely $Gen(\mathbf{Z}) = Ab$ and so is $Im(\mathcal{H})$ (here $E = End(\mathbf{Z}) \cong \mathbf{Z}$) (indeed, \mathbf{Z} is a projective generator in Ab).

If $G = \mathbf{Z}_n$ then $Gen(\mathbf{Z}_n) = \{G \in Ab | nG = 0\}$ and so is $Im(\mathcal{H})$ (and moreover, both are varieties) and these *n*-bounded groups are naturally considered as \mathbf{Z}_n -modules.

If $G = \mathbf{Z}(p^{\infty})$ a result already mentioned of [3] shows that \mathcal{H} provides an equivalence between $Gen(\mathbf{Z}(p^{\infty}))$ which is the subcategory of Ab of all the divisible pgroups and $Im(\mathcal{H})$ which is exactly the category of all the cotorsion torsion-free J_p -modules.

If $G = \mathbf{Q}$ then $Gen(\mathbf{Q})$ contains all the torsion-free divisible groups and their factor groups (hence contains also a lot of torsion divisible groups) and $Im(\mathcal{H})$ contains \mathbf{Q} -modules (here $E = End(\mathbf{Q}) \cong \mathbf{Q}$) which are - as groups - torsion-free. This clarifies somewhat the counterexample from section 2.

5 Acknowledgements

The author is indebted to Alberto Facchini, Ricardo Colpi and K.M. Rangaswamy for helpfully suggestions and comments.

References

- Anderson F.W., Fuller K.R., Rings and Categories of Modules, second edition, Springer Verlag, 1992.
- [2] Dal Pio S., Una classe di equivalenze rappresentabili tra le categorie di moduli. Tesi di laurea, luglio 1991.
- [3] Harrison D.K., Infinite abelian groups and homological methods, Ann. Math., 69 (1959), p.366-391.
- [4] Morita K., Localization in categories of modules I, Math. Z., 114 (1973), p.121-144.
- [5] Onodera T., Codominant dimensions and Morita equivalences, Hokkaido Math. J., 6 (1977), p.169-182.
- [6] Orsatti A., Equivalenze rappresentabili tra categorie di moduli, Rend. Sem. Mat. Fiz., Milano, vol.LX (1990), p.243-260.
- [7] Orsatti A., Una introduzione all teoria dei moduli, ARACNE, 1995.
- [8] Trlifaj J., Every *-module is finitely generated, J. Algebra 169, (1994), p.392-398.