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Abstract

Clean integral 2 × 2 matrices are characterized. Up to similarity the strongly clean
matrices are completely determined and large classes of uniquely clean matrices are found.
In particular, classes of uniquely clean matrices which are not strongly clean are found.

1. Introduction

The important role of idempotents, nilpotent elements and units in Ring
Theory was recognized already a century ago. Considering elements which
are sums of two such elements is more recent. Sums of an idempotent and a
unit (called clean elements) were defined by Nicholson (1977) in [7]. Sums of
an idempotent and a nilpotent element (called nil-clean elements) were con-
sidered by Diesl (2006) in his Ph. D. thesis, and finally sums of a unit and a
nilpotent element (called fine elements) were considered by the author and
T. Y. Lam (2015) in [5]. Further, a ring (with identity) is called clean if all
its elements are clean, nil-clean if all its elements are nil-clean and fine if
all its nonzero elements are fine. An element is called uniquely clean (or nil-
clean or fine) if it has only one clean (or nil-clean, or fine) decomposition,
and strongly clean (or nil-clean or fine), if the components of the decompo-
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42 GRIGORE CĂLUGĂREANU

sition commute. If a = e+ u with e2 = e and unit u, we say that e is the
idempotent in this clean decomposition.

Analogously, uniquely or strongly clean (or nil-clean or fine) rings were
defined and between all these classes, several inclusions were (easily) estab-
lished.

The following inclusions are well-known: nil-clean rings are clean (see [6]),
uniquely clean rings are Abelian (i.e., the idempotents are central; see [8]),
uniquely nil-clean rings are Abelian (see [6]) and fine rings are simple (see [5]).
Therefore uniquely clean rings are strongly clean and uniquely nil-clean rings
are strongly nil-clean.

Despite all these inclusions, when it comes to comparing the correspond-
ing types of elements, everything fails. So far mostly all examples were
chosen in M2(Z), the ring of all 2× 2 integral matrices.

In this paper we investigate this ring as far as cleanness of elements is
concerned. Clearly, such an investigation should answer the following ques-
tions:

When is a given 2× 2 integral matrix clean, strongly or uniquely clean,
respectively?

This is the content of sections 3, 4 and 5. Characterizations for clean
matrices are given, strongly clean matrices are determined up to similarity
and large classes of uniquely clean matrices are found.

2. Similarity and clean 2× 2 matrices

Two n× n matrices A, B over any unital ring R, are similar (or con-

jugate) if there is an invertible matrix U such that B = U−1AU . Since
similarity is an equivalence relation, a partition ofMn(R) corresponds to it.
The subsets in this partition are called similarity classes.

The notions of clean, uniquely clean and strongly clean are similarity
invariants.

In the sequel R = Z and n = 2, that is, we deal with 2× 2 integral matri-
ces. Our goal is to find all the similarity classes of clean matrices. In doing
so, it is natural to choose in each similarity class a special representative,
namely a representative which uses a special idempotent, the matrix unit
E11. Recall that the characteristic polynomial of a 2× 2 matrix A is given
by x2 − Tr(A)x+ det(A), with Tr(A) denoting the trace of the matrix A.

We first recall from [3] the following

Definition 1. Let A =

[
a b
c d

]
be a 2× 2 integral matrix and D =

Tr(A)2 − 4 det(A). If D is a square (e.g. det(A) = 0), that is, the char-
acteristic polynomial of the matrix factors over the integers, say, f(x) =

(x− α)(x− δ), where α ≥ δ, then, for α 6= δ the matrix

[
α β
0 δ

]
is reduced if

0 ≤ β < α− δ, and, for α = δ, if β ≥ 0.
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Example. The matrix unit E11 =

[
1 0
0 0

]
is reduced, I2 is also (idempo-

tent and) reduced, but E22 is not reduced. Actually E11 and E22 are similar:

for U =

[
0 1
1 0

]
we have U2 = I2 and UE11U = E22.

Next, also from [3] (Theorem 5.2), recall the following

Theorem 1. Let M ∈M2(Z) and assume that the characteristic polyno-
mial of M factors over Z. Then M is similar to a reduced matrix. Moreover,
this class representative is unique thus no two different reduced matrices are
similar.

This theorem has an important consequence.

Corollary 2. Any non trivial 2× 2 idempotent integral matrix is sim-
ilar to E11.

That is, all nontrivial idempotent matrices belong to the same similarity
class and E11 is the only reduced representative in this class.

Examples. 1) If E =

[
1 0
s 0

]
then with P =

[
1 0
s 1

]
we get E11 = P−1EP .

2) If E =

[
s+ 1 −s− 1
s −s

]
then with P =

[
s+ 1 1
s 1

]
we get E11 = P−1EP .

Given any clean matrix A = E + U , if E11 = P−1EP for a suitable in-
vertible matrix P , P−1AP = E11 +P−1UP is similar to A and will be called
the E11-reduction of A.

A clean element (in any ring) will be called trivial if its decomposition
uses a trivial idempotent. That is, the trivial clean elements are the units
and the elements 1+u with u ∈ U(R). These elements are obviously strongly
clean. All the other clean elements will be called nontrivial.

Trivial clean elements are easy to characterize in M2(Z): the units are
precisely the matrices with determinant = ±1 and the other type is charac-
terized by det(A)− Tr(A) ∈ {−2, 0} (i.e. A− I2 is a unit). Since these use
trivial idempotents (with trace = 0 or = 2), which are not similar to E11, for
these an E11-reduction cannot be made.

A special case of the following characterization was hidden in [2].

Theorem 3. A 2× 2 integral matrix A =

[
a b
c d

]
is nontrivial clean iff

the system

(1)

(2)

{
x2 + x+ yz = 0

(a− d)x+ cy + bz + det(A)− d = ±1

Authenticated calu@math.ubbcluj.ro/ Author's copy | Downloaded 04/21/22 06:19 AM UTC



44 GRIGORE CĂLUGĂREANU

with unknowns x, y, z, has at least one solution over Z. If b 6= 0 and (2)
holds, then (1) is equivalent to

(3) bx2 − (a− d)xy − cy2 + bx+ (d− det(A)± 1)y = 0.

Proof. Any nontrivial idempotent is characterized by zero determinant
and trace = 1. The general matrix A is clean iff there is a nontrivial idempo-

tent E =

[
x+ 1 y
z −x

]
i.e., Tr(E) = 1 and −det(E) = x2 + x+ yz = 0, that

is (1), such that det(A− E) = ±1. If (1) holds, the last condition amounts
to (a− d)x+ cy + bz + det(A)− d = ±1, that is (2).

If b 6= 0 (the case c 6= 0 is symmetric), multiplying (1) by b and eliminat-
ing z, we get the Diophantine equation

bx2 − (a− d)xy − cy2 + bx+ (d− det(A)± 1)y = 0,

that is (3). �

This characterization is straightforward, but useful since the solutions of
a degree two Diophantine equation in two unknowns (if any) are instantly
found using computer aid (see [1]).

Remarks 1. 1) The Theorem remains true for matrices over any (com-
mutative) integral domain if we replace ±1 with the set of units (indeed, a
square matrix over a commutative ring is invertible iff its determinant is a
unit and Cayley-Hamilton’s theorem holds).

2) For further use, observe that equations (1) or (3) have always the so-
lutions (x, y) = (0, 0) and (x, y) = (−1, 0) with an arbitrary z. Moreover, (3)
has also the solution (x, y) = (a, b) iff (d± 1)b = 0.

3) There are two equations denoted (±3) and two equations (±2). Only
solutions for either (+3) with (+2) or else for (−3) with (−2) are suitable.

4) In [2], the matrix

[
3 9
−7 −2

]
was shown to be nil-clean but not clean.

Using computer aid (see [1]) it is readily checked that this matrix is not
clean. Indeed, the equations (±3) are 9x2 − 5xy + 7y2 + 9x− 58y = 0, resp.
9x2 − 5xy + 7y2 + 9x− 60y = 0. The first has only (0, 0) and (−1, 0) as so-
lutions, the second has two more: (1, 9) and (a, b) = (3, 9).

Since (2) is 5x− 7y + 9z + 59 = ±1, clearly (0, 0) and (−1, 0) are not
suitable. Since (d± 1)b 6= 0, (a, b) is also not suitable so that only (1, 9)
remains. However, (1, 9) is a solution for (−3) but verifies only (+2). Hence
the equations have no integer solutions and the matrix is not clean.

The case b = c = 0 (i.e. A is diagonal) was not included in the previous
theorem. As in the previous theorem, trivial clean diagonal matrices must
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be excepted (i.e. those who use an idempotent of trace 1). There are four

units, namely I2,−I2,

[
1 0
0 −1

]
and

[
−1 0
0 1

]
, or I2 added to any of these units,

that is 2I2, 02,

[
2 0
0 0

]
and

[
0 0
0 2

]
. The (nontrivial) cleanness of the remaining

diagonal matrices is characterized by the following

Theorem 4. Let A =

[
a 0
0 d

]
be a diagonal integral matrix.

(i) If a = d /∈ {−1, 0, 1, 2} the matrix is not clean;

Suppose a > d but (a, d) /∈ {(1,−1), (2, 0)}.

(ii) If a− d is even then the matrix is not clean;

(iii) If a− d is odd then

[
a 0
0 d

]
is clean iff d(d− 1) ≡ ±1(mod(a− d)); a

necessary condition is a−d = m(m− 1)± 1 for a suitable positive integer m.

Proof. Notice that if b = c = 0 the cleanness of A is equivalent to (±2),
which is (a− d)x+ det(A)− d = (a− d)x+ (a− 1)d = ±1, because if an in-
teger x satisfying (±2) exists, we can always chose y, z such that (1) holds.
This is equivalent to (a− 1)d ≡ ±1(mod(a− d)).

Therefore, diagonal matrices, if nontrivial clean, are never uniquely clean
(indeed, for any integer x, x(x+ 1) = −yz has more than one solution for
y, z).

(i) If a = d then A = aI2 and the condition above amounts to a2 − a∓
1 = 0, which has no integer solutions.

(ii) Indeed, in this case a, d have the same parity but a− 1, d are of op-
posite parity. Therefore (a− 1)d is even and (a− 1)d∓ 1 is odd. Hence it is
not divisible by a− d.

(iii) The condition is obvious for a− d = 1, so we can assume a− d ≥ 3.
By adding and subtracting d2, we write (2) equivalently as d(d− 1) ≡
±1 (mod (a− d)).

Finally, for given a− d, there exists an integer x such that x(x− 1) ≡ ±1
(mod (a− d)) only if a− d = m(m− 1)± 1 for a suitable positive integer m
(just view x as a unit in Z(a− d)). �

Remark 2. The necessary condition is also useful. For some small odd
numbers it says that diagonal matrices with a− d ∈ {3, 5, 7, 11, 13, 19, 21}
may be clean for some values of d, but diagonal matrices with a− d ∈
{9, 15, 17, 23, 25} are not clean for any value of ḋ.

The following consequence of Theorem 3 will be useful for determining
uniquely clean matrices whose idempotent is E11 (p. 51).
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Corollary 5. A matrix A =

[
a b
c d

]
(is clean and) admits E11 as idem-

potent in a (nontrivial) clean decomposition iff det(A)− d = ±1.

Examples. 1) There are clean matrices with any determinant (k ∈ Z),
or any NE entry: [

0 k
−1 k − 1

]
= E11 +

[
−1 k
−1 k − 1

]
.

Analogous, any SW entry.

2) There are clean matrices with any secondary diagonal (b, c):[
0 b
c 1− bc

]
= E11 +

[
−1 b
c 1− bc

]
.

3) Any unit with d = 0 has a clean E11-decomposition.

3. Strongly clean matrices

Since trivial clean matrices are strongly clean, the determination of
strongly clean matrices reduces to nontrivial clean matrices. Up to simi-
larity this is solved by E11-reduction in our next result.

To simplify some of our statements we introduce the following

Definition 2. A clean matrix is called basic if it has a decomposition

E + U where U ∈ {±I2,±
[
1 0
0 −1

]
} (that is, the unit is diagonal).

Remark 3. Basic matrices may not be strongly clean.

For example

[
1 0
1 0

]
+

[
1 0
0 −1

]
is basic but not strongly clean. However,

a basic matrix E + U is strongly clean iff these are either of form E ± I2

or else of form E ±
[
1 0
0 −1

]
, with diagonal idempotent E (i.e.

[
a 0
0 b

]
with

a, b ∈ {0, 1}).

Theorem 6. Every nontrivial strongly clean matrix inM2(Z) is similar
to a basic matrix.

Proof. Suppose A is nontrivial strongly clean in M2(Z). Then A
is similar to a strongly clean matrix B whose idempotent is E11, that is,

B = E11 + U with a unit U =

[
s t
v w

]
such that E11 and U commute. How-
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ever the equalities[
1 0
0 0

] [
s t
v w

]
=

[
s t
0 0

]
=

[
s t
v w

] [
1 0
0 0

]
=

[
s 0
v 0

]
hold iff t = v = 0, that is, U must be a diagonal unit. Hence s, w ∈ {±1}

and U ∈
{
I2,−I2,

[
1 0
0 −1

]
,

[
−1 0
0 1

]}
and so B is basic. �

Rephrasing, up to similarity, the only (nontrivial) strongly clean matri-
ces are the basic matrices described before the previous theorem.

4. Uniquely clean matrices

Since we intend to approach uniquely clean matrices by using similarity
and E11-reduction, we must deal separately with trivial clean matrices.

The determination of uniquely trivial clean matrices consists answering
the following two questions:

(a) Which units are uniquely clean? and

(b) Let U be a unit in M2(Z). When is I2 + U uniquely clean?

In dealing with (a), for a unit U , three cases must be considered, cor-

responding to the discriminant ∆ = Tr2(U)− 4 det(U) of the characteristic
polynomial associated to U : the elliptic, the parabolic and the hyperbolic
cases.

This problem was solved in [4]. It turns out that there are no uniquely
clean units in the elliptic and in the parabolic cases and only few uniquely
clean matrices in the hyperbolic case.

The following straightforward result will be useful.

Lemma 7. Let

E ∈ {02, I2, E11, E22, E11 + E12, E11 + E21, E21 + E22, E12 + E22}.

Then a matrix A =

[
a b
c d

]
has a clean E-decomposition iff

det(A) = ±1,

det(A)− Tr(A) + 1 = ±1,

det(A)− d = ±1,

det(A)− a = ±1,

det(A) + c− d = ±1,

det(A) + b− d = ±1,

det(A) + b− a = ±1,

det(A) + c− a = ±1,
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Proving that clean matrices are uniquely clean may not be easy, even for
concrete examples.

In the sequel, here are some infinite classes of (not similar) uniquely clean
matrices.

First consider Nn =

[
n2 −n
n −1

]
for n ≥ 1.

Proposition 8. For any positive integer n≥3, the matrix Nn is uniquely
clean.

Proof. Clearly Nn = E11 +

[
n2 − 1 −n
n −1

]
is a clean decomposition but

not strongly clean (by Theorem 6). The proof reduces to the following

Claim. For n ≥ 3 equations (±3), each, have only (0, 0) and (−1, 0) as
solutions.

Equations (±3) are now −nx2 − (n2 + 1)xy − ny2 − nx+ (−1± 1)y = 0
and equations (±2) are (n2 + 1)x+ ny − nz + 1 = ±1.

The reduction: The pair (+3) with (+2) has obviously the solution (0, 0)
with z = 0 which gives the clean decomposition above.

Has not solution (−1, 0): nz = −(n2 + 1) implies n divides n2 + 1 (im-
possible from n ≥ 2: gcd(n;n2 + 1) = 1).

The pair (−3) with (−2) has not (0, 0): nz = 2 has no integer solution
for n ≥ 3.

Has not solution (−1, 0): nz = −(n2 − 1) implies n divides n2 − 1 (im-
possible from n ≥ 1: gcd(n;n2 − 1) = 1).

Proof of Claim. It suffices to show that y = 0 for any solution. Then
from (1), x(x+ 1) = 0 and so x ∈ {−1, 0}.

As for (+3), consider the degree two equation in x, nx2 + (n2 + 1)xy +
ny2 + nx = 0. We show that for y > 0 the discriminant D = [(n2 + 1)y +
n]2 − 4n2y2 cannot be a square. By easy computations we get D = [(n−
1)2y+n][(n+ 1)2y+n] = [(n2−1)y+n]2 + 4ny. Since n ≥ 3, we have 4ny <
2[(n2− 1)y+n] + 1, and so [(n2− 1)y+n]2 < D < [(n2− 1)y+n+ 1]2. Since
D is strictly between two consecutive squares, D cannot be a square.

The case y < 0 is analogous and so is the proof for (−3). �

Remark 4. The clean index (i.e. the number of different clean decom-
positions) shows to some extent, how “far” a given matrix is from being
uniquely clean.

N1 is a nilpotent which has clean index ∞.
Indeed,

N1 =

[
1− t2 t2 − t
−t2 − t t2

]
+

[
t2 −1− t2 + t

1 + t2 + t −1− t2
]
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and also

N1 =

[
(t− 1)2 −t(t− 1)

(t− 1)(t− 2) −t(t− 2)

]
+

[
1− (t− 1)2 −1 + t(t− 1)

1− (t− 1)(t− 2) −1 + t(t− 2)

]
.

N2 has index 4.

Next, consider the matrices Mn =

[
n2 n
n 1

]
for n ≥ 1.

Proposition 9. For every positive integer n ≥ 3, the matrix Mn is
uniquely clean.

Proof. The clean decomposition is Mn = E11 +

[
n2 − 1 n
n 1

]
(for (−3)

and (−2)). Again the proof reduces to the following

Claim. For n ≥ 3 equations (±3), each, have only (0, 0) and (−1, 0)
solutions.

Equations (±3) are now nx2− (n2− 1)xy− ny2 + nx+ (1± 1)y = 0 and
equations (±2) are (n2 − 1)x+ ny + nz − 1 = ±1.

The reduction: (0, 0) is not a solution for the pair (+3) with (+2). In-
deed, nz = −2 has no integer solution for n ≥ 3.

Has not solution (−1,0): nz = n2 +1 implies n divides n2 +1 (impossible
from n ≥ 2: gcd(n;n2 + 1) = 1).

The pair (−3) with (−2) has solution (0, 0): z = 0 which gives the E11-
decomposition.

Has not solution (−1,0): nz = n2−1 implies n divides n2−1 (impossible
from n ≥ 1: gcd(n;n2 − 1) = 1).

Proof of Claim. This is analogous to the proof of the previous propo-
sition. With similar notations, the proof (for (+3) and y > 0) reduces to
[(n2 + 1)y−n]2 < D < [(n2 + 1)y−n+ 1]2, which is true, because for n ≥ 3,
4ny < 2[(n2 + 1)y − n] + 1 holds. �

Similarly for y < 0 and for (−3). �

Remark 5. M1 has index 6 (any of the idempotents E11, E22,

[
1 0
2 0

]
,[

0 0
2 1

]
,

[
0 2
0 1

]
,

[
1 2
0 0

]
yield a clean decomposition) and M2 has index 3 (the

idempotents E11,

[
1 0
1 0

]
,

[
1 1
0 0

]
).

Further, consider the matrices Ln =

[
n(n+ 1) −n− 1

n −1

]
for n ≥ 1.
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Proposition 10. For every positive integer n ≥ 3, the matrix Ln is
uniquely clean.

Proof. The clean decomposition is Ln = E11 +

[
n2 + n− 1 −n− 1

n −1

]
(for

(+3) and (+2)). Again the proof reduces to the following

Claim. For n ≥ 3 equations (±3), each has only (0, 0) and (−1, 0) as
solutions.

The reduction: Equations (±3) are now

−(n+ 1)x2 − (n2 + n+ 1)xy − ny2 − (n+ 1)x+ (−1± 1)y = 0

and equations (±2) are

(n2 + n+ 1)x+ ny − (n+ 1)z + 1 = ±1.

The pair (+3) with (+2) has obviously the solution (0, 0) with z = 0
which gives the clean decomposition above.

Has not solution (−1, 0): (n+ 1)z = −(n2 + n+ 1) implies n+ 1 divides
n2 + n+ 1 (impossible from n ≥ 2: gcd(n+ 1;n2 + n+ 1) = 1).

The pair (−3) with (−2) does not have (0, 0) as a solution: (n+ 1)z = 2
has no integer solution for n ≥ 3.

Has not solution (−1, 0): (n+ 1)z = −(n2 + n− 1) implies n+ 1 divides
n2 + n− 1 (impossible from n ≥ 1: gcd(n+ 1;n2 + n− 1) = 1).

Proof of Claim. Again (as proofs of the previous two propositions),
with similar notations, we reduce the claim (for (+3) and y > 0) to

[(n2 + n− 1)y + n+ 1]2 < D < [(n2 + n− 1)y + n+ 2]2

because for n ≥ 3, 2[(n2 + n− 1)y + n+ 1] > 4(n+ 1)y.

A similar proof works for y < 0 and for (−3). �

Remarks 6. 1) L1 is an idempotent which is clean of index ∞. Indeed,

L1 =

[
1− t t
1− t t

]
+

[
1 + t −2− t
t −1− t

]
and also

L1 =

[
1 + 2t −2− 4t
t −2t

]
+

[
1− 2t 4t
1− t −1 + 2t

]
.

L2 has index 3 (the idempotents E11,

[
1 0
1 0

]
,

[
1 1
0 0

]
).
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2) One can show that the matrices Kn =

[
n(n+ 1) −n
n+ 1 −1

]
are uniquely

clean for n ≥ 3. Though Kn = (L′n)T , where

L′n =

[
1 0
0 −1

]
Ln

[
1 0
0 −1

]
=

[
n(n+ 1) n+ 1
−n −1

]
,

this does not follow directly from the proof for Ln because it is known that
a matrix might not be similar to its transpose.

It would be nice to find an example of uniquely clean matrix whose
transpose is not uniquely clean.

Next, as already done for nontrivial strongly clean matrices, up to simi-
larity, we want to determine the uniquely clean matrices whose idempotent is

E11. According to Corollary 5, we are searching for matrices A =

[
a b
c d

]
with

det(A)− d = ±1, such that A = E11 + U is the only clean decomposition,
i.e. such that for any idempotent E 6= E11, det(A− E) 6= ±1.

First we gather some necessary conditions.

Proposition 11. If A =

[
a b
c d

]
has a uniquely clean E11-decomposition

then all entries in A are nonzero. Moreover, a 6= d, b 6= a− d and c 6= a− d.

Proof. As seen above det(A) = d± 1 and for any idempotent E 6= E11

we must have det(A− E) 6= ±1. The conditions follow from Lemma 7. �

Finally, in order to give necessary and sufficient conditions for uniquely
clean E11-reduced matrices, we have to consider nontrivial idempotents

E =

[
x+ 1 y
z −x

]
with x2 + x+ yz = 0 but not all three x = y = z = 0. This

is somewhat analogous to the contrapositive of the statement of Theorem 3.

Theorem 12. Let A =

[
a b
c d

]
be a matrix with only nonzero entries, a 6=

d and det(A)− d = ±1. Then A is uniquely clean iff the system

(1)

(2)

{
x2 + x+ yz = 0

(a− d)x+ cy + bz = 0

has only the zero solution. Equivalently, we can take the system (2) together
with

bx2 − (a− d)xy − cy2 + bx = 0.(3)
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So what remains to be done is to find necessary and sufficient conditions
such that this system has only the zero solution.

In order to find (necessary and) sufficient conditions for such matrices
to be uniquely clean, we have to solve the following

Problem. Suppose a, b, c are nonzero integers (with or without b, c do
not divide a). What conditions on a, b, c assure that the system

x2 + x+ yz = 0(1)

ax+ by + cz = 0(2)

has only the zero solution as integer solution.
From a geometrical point of view, we have to intersect a plane with a

hyperboloid of one sheet, both passing through the origin.
Since so far we were not able to solve it, the problem remains open.
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[4] Andrica, D. and Călugăreanu, G., Uniquely clean 2 × 2 invertible integral ma-
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