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Endomorphisms and automorphisms of squares of abelian
groups

Grigore C̆aluğareanu and Phill Schultz

Abstract. A major theme in Tony Corner’s work is the interaction between abelian groups and their
rings of endomorphisms and groups of automorphisms. Here we study the properties of an abelian
groupA which are reflected in Aut(A⊕A).
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1 Introduction and Notation

Let A be an abelian group. We say thatA is determined in a categoryA of abelian
groups by its endomorphism ring if wheneverB ∈ A has the property thatE(A) ∼=
E(B) as rings, thenA ∼= B as abelian groups. Similarly, we say thatA is determined
in A by its automorphism group if wheneverB ∈ A has the property that Aut(A) ∼=
Aut(B) as groups, thenA ∼= B as abelian groups.

Usually a group is determined neither by its automorphism group nor its endo-
morphism ring in a non–trivial category of torsion–free abelian groups closed under
isomorphisms. However, ifA is a rational group of idempotent type, that is, a subring
of the rational numbers, thenA is determined by its endomorphism ring in the category
of rational groups of idempotent type, [MS00]. In fact, sinceA is determined by the
set of primesp for whichpA = A, A is even determined by its additive endomorphism
group End(A) in this category. On the other hand,A is determined by its automorphism
group in the same category only ifA ∼= Z, whereasQ is determined by Aut(Q) in the
category of torsion–free divisible groups, as well as by End(Q) in the same category.
Of course, ifA is determined in a given category by Aut(A) or End(A), then it is also
determined byE(A).

A new phenomenon was considered by the first author in [Cal06]. He shows that
more information aboutA is sometimes provided by Aut(A2) = Aut(A ⊕ A). For
example, ifA and B are rational groups of idempotent type and both are divisible
by exactlyn primes, wheren is a positive integer or infinity, then always Aut(A) ∼=
Aut(B) [MS00, Proposition 4.3], and the following are equivalent:

(i) Aut(A2) ∼= Aut(B2)
(ii) End(A) ∼= End(B)

(iii) A andB are both are divisible by the same sets of primes.

(iv) A ∼= B

We say thatA is determined in a categoryA by its square automorphism group if
wheneverH ∈ A has the property that Aut(A2) ∼= Aut(H) as groups, thenH = B2
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with A ∼= B as abelian groups. Similarly,A is determined in a categoryA by its
square endomorphism ring, if wheneverH ∈ A has the property thatE(A2) ∼= E(H)
as rings, thenH = B2 with A ∼= B as abelian groups. Determination by the square
endomorphism group End(A2) can be similarly defined.

It is the purpose of this paper to investigate this phenomenon. There are well known
examples in the literature [F70, Theorem 90.3] of non–isomorphic indecomposable
torsion–free groupsA andB for which A2 ∼= B2, so in general Aut(A2) ∼= Aut(B2)
does not imply thatA ∼= B.

One could also consider groups determined by the automorphism group of higher
powers; for example, Hahn and O’Meara [HO’M89, 3.3.8 and 3.3.11] showed thatA
is determined by Aut(An) for all n ≥ 3 in the category of abelian groups whose endo-
morphism ring is a principal ideal domain, and Krylov et al [KMT03] showed thatA
is determined by Aut(An) for all n ≥ 4 in the category of abelian groups whose en-
domorphism ring is commutative. However, in this paper we only consider the square
case.

Although we have not obtained definitive results on the structure of groups determ-
ined by their square automorphism groups, we have found several properties of pairs of
groups whose square automorphism groups are isomorphic. The main result is that if
A andH are torsion–free abelian groups divisible by 2 such that Aut(A2) ∼= Aut(H),
thenH = B2 for some groupB such that End(A) ∼= End(B). Furthermore, we show
that in this case, Aut(A)× Aut(A) ∼= Aut(B)× Aut(B).

Consequently,A is determined by its square automorphism group in the category
of torsion–free abelian groups ifA is determined by its endomorphism group in that
category. We also pose some intriguing questions which will be the subject of further
research.

Of course, the fact that End(A) ∼= End(B) does not imply thatE(A) ∼= E(B) is
well known. As long ago as 1959, Sasiada [S59] found examples of rank 2 torsion–
free groupsA andB, A being completely decomposable, satisfying the former but not
the latter. Nowadays, such examples are easy to construct using the methods of Mader
[M00, Section 15.2].

The notation is mostly standard as in [F70]. In particular,Z denotes the group or
ring of integers andQ the group or ring of rationals. Unless specifically excepted, the
word group will denote a torsion–free abelian group. We use the common symbol∼=
for group, abelian group or ring isomorphism, the meaning being specified when it is
ambiguous. Similarly,Z(X) denotes the center of the group or ringX andX ⊕ Y is
the direct sum or direct product of groups or ringsX andY .

Let G = A⊕B be a direct sum of groupsA andB. ThenE(G) can be represented

by the ring of 2× 2 matrices

[
End(A) Hom(A,B)

Hom(B,A) End(B)

]
, the action being given by

(a, b)

[
r s

t u

]
= (ar + bt, as + bu) for all (a, b) ∈ G.

In particular, ifG = A2, then we can representE(G) byM = M(2, E(A)), the ring
of 2× 2 matrices with entries fromE(A), where the slight abuse of notation causes no
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harm. It is straightforward to verify that GL(2, E(A)) = Aut(A2) corresponds to the
group of invertible matrices inM.

In general, we denote abstract automorphisms ofG by Greek lower case letters, but
their representation by matrices by capital Latin letters, so for example an automorph-

ismα is represented byA =

[
r s

t u

]
.

In accordance with common practice in group theory, function names are written
on the right of their arguments but functor names are written on the left. For example,
Z(Aut(A)) denotes the center of Aut(A) andZ(E(A)) the center ofE(A). In par-
ticular, if F is a sub–functor of the identity in the category under consideration and
f ∈ Hom(A,B) thenF (A)f ⊆ F (B).

WhenX andY are groups, abelian or not, the notationX ≤ Y means thatX is a
subgroup ofY andX E Y means thatX is a normal subgroup ofY . WhenX ≤ Y ,

CY (X) = {y ∈ Y : yx = xy for all x ∈ X}

is the centralizer ofX in Y and

NY (X) = {y ∈ Y : y−1xy ∈ X for all x ∈ X}

is the normalizer ofX in Y .
For any unital ringR, R+ denotes the additive group ofR andU(R) the unit group

of R so thatU(M(2, E(A))) = GL(2, E(A)).

2 Properties of automorphism groups preserved by an iso-
morphism

In this section, we pose several naturally arising questions concerning these properties.
Throughout the section,A is a group divisible by 2,G = A2 and θ : Aut(G) →
Aut(H) is an isomorphism. Note that in general, ifA and B are groups such that
2A = A, Aut(A) ∼= Aut(B) does not imply that 2B = B, which prompts our first
question:
Question 2.1. For whichG = 2G does it follow thatθ maps multiplication by 2 onto
mutiplication by 2?

Because of the result of the first author cited above, the answer is affirmative forA
a rank 1 group of idempotent type. Incidentally, 2–divisibility is anadditiveproperty
of groups, but in our situation, it can be determined multiplicatively.

Proposition 2.2. 2 is an automorphism ofG if and only ifY =

[
1 1
0 1

]
=

[
1 s

0 1

]2

for somes ∈ E(A).

Proof. If 2 is an automorphism ofG thenA is also 2–divisible so there existss ∈ E(A)

such that 2s = 1. Hence

[
1 s

0 1

]2

=

[
1 2s
0 1

]
= Y .
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Conversely, if

[
1 s

0 1

]2

=

[
1 2s
0 1

]
= Y , then 1= 2s in Aut(A) soA and henceG

are 2–divisible.

There is a similar criterion usingY T (Y transpose), but these results are not strong
enough to settle Question 2.1.

Since orders and centralizers of automorphisms are preserved by isomorphisms,
it is important to consider special elements ofG for which these characteristics are
known. For example,−1 is a central automorphism ofG of order 2, so(−1)θ is a
central automorphism ofH of order 2. Hence one may ask:

Question 2.3. When is(−1)θ = −1?

This question will be discussed further in Section 3. Other special automorphisms
of G whose algebraic properties are reflected in Aut(H) include

(i) X =

[
0 1
1 0

]
and its additive inverse−X of order 2.

(ii) Z =

[
0 1
−1 0

]
of order 4. Its additive and multiplicative inverse coincide.

Note that conjugation byX andZ map upper triangular elements and subgroups to
lower triangular elements and subgroups, while conjugation byY preserves upper and
lower triangularity.

3 Involutions

In this section,G is a 2–divisible group andH is a group such that Aut(G) ∼= Aut(H).
An involution µ of G is an automorphism of order 2. As shown in [F73, Section

113],µ determines a decompositionG = Gµ ⊕ G−µ whereGµ = {x ∈ G : xµ = x}
andG−µ = {x ∈ G : xµ = −x}. Conversely, every decompositionG = A ⊕ B
determines an involutionµ for which Gµ = A andG−µ = B, namelyµ = 2πA − 1
whereπA is the projection ofG alongB ontoA.

If G is any group, then the involution−1 of G is called thetrivial involution since
the corresponding decomposition is 0⊕ G. The importance of involutions for our
problem is that ifθ : Aut(G) → Aut(H) is an isomorphism, thenθ maps involutions of
G onto involutions ofH. This in itself does not imply that non–trivial decompositions
of G induce non–trivial decompositions ofH or vice versa, firstly becauseH may not
be 2–divisible and secondly because(−1)θ may not equal−1.

We now assume in the rest of this section thatH is 2–divisible and study the image
of the central involution−1 underθ. Let β = (−1)θ. We call θ good if β = −1,
otherwisebad.

Proposition 3.1. LetG andH be 2–divisible groups and letθ : Aut(G) → Aut(H) be
an isomorphism. Ifθ is bad, then there are decompositionsG = A ⊕ B, H = C ⊕D
such thatA andB are fully invariant inG andC andD are fully invariant inH.
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Proof. Sinceθ is bad,β is a non–trivial involution and henceH has a decomposition

H = Hβ ⊕H−β with respect to whichβ has the matrix form

[
1 0
0 −1

]
. Let C = Hβ

andD = H−β.
Sinceβ is central in Aut(H), β commutes with all automorphisms of the form[

1 s

0 1

]
with s ∈ Hom(C,D). But this implies thats = −s for all s ∈ Hom(C,D)

and hence Hom(C,D) = 0 soC is fully invariant in H. Similarly, by considering

automorphisms of the form

[
1 0
t 1

]
with t ∈ Hom(D,C) we conclude thatD is fully

invariant inH.
Now consider−1 ∈ Aut(H) andα = (−1)θ−1. Sinceα 6= −1, α is a non–trivial

central involution in Aut(G), so by the same argument, we conclude thatG = A ⊕ B
with A andB fully invariant inG.

Now for the good news. Even thoughθ may not map−1 to−1, it can always be
perturbed to do so.

Proposition 3.2. If Aut(G) ∼= Aut(H) then there exists a good isomorphismφ :
Aut(G) → Aut(H).

Proof. Let θ : Aut(G) → Aut(H) be an isomorphism. Let(−1)θ = β. If β 6= −1 then
by Proposition 3.1,H = C ⊕D such thatβ|C = 1 andβ|D = −1. Letγ ∈ Aut(H)
act as−1 onC and the identity onD. Thenφ = β ◦ γ is an isomorphism of Aut(G)
onto Aut(H) which maps−1 to−1.

Proposition 3.2 has some useful consequences.

Corollary 3.3. If Aut(G) ∼= Aut(H) then there is an isomorphismφ : Aut(G) →
Aut(H) such that for allα ∈ Aut(G), (−α)φ = −(αφ).
Corollary 3.4. Let θ : Aut(G) → Aut(H) be a good isomorphism, and letG =

A ⊕ B be any non–trivial decomposition ofG. Let α with matrixM =

[
1 0
0 −1

]
be

the involution corresponding to this decomposition ofG. Then there is a non–trivial
decompositionH = C ⊕ D such thatαθ has the same matrixM with respect to this
decomposition.

Given a non–trivial decompositionG = A⊕B of G, we are interested in involutions
ν for whichGν = A andG−ν = C for some different complementary summandC. A
pair (r, s) ∈ Hom(A,B)×E(B) is called adecomposition pairif (1+ s)r = 0 ands is
an involution in Aut(B). Decomposition pairs are used to classify the decompositions
of G for whichA is fixed as the first summand.

Proposition 3.5. Let G = A ⊕ B. Then any involution fixingA corresponds to a

matrix of the formM =

[
1 0
r s

]
for some decomposition pair(r, s). Conversely, if
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M =

[
1 0
r s

]
for some decomposition pair(r, s) thenM is the matrix corresponding

to an involution fixingA.

Proof. Let M be an involution fixing{(a, 0) : a ∈ A}, so its first row has the form

(1, 0). HenceM =

[
1 0
r s

]
for some pair(r, s) ∈ Hom(B,A)× E(B). ThenM2 = 1

implies that(1 + s)r = 0 ands2 = 1. M 6= I implies thats 6= 1. Hence(r, s) is a
decomposition pair.

Conversely, any suchM is an involution andG = M+ ⊕ M− whereM+ =
{(a, 0) ∈ G : a ∈ A} andM− = {(a, b) ∈ G : br = −2a andbs = −b}.

Remarks 3.6. (i) s = −1 for all decomposition pairs if and only ifB is directly
indecomposable.

(ii) (r,−1) is a decomposition pair for anyr ∈ Hom(B,A).
(iii) The given decompositionG = A2 corresponds to the decomposition pair(0,−1).
(iv) We refer to the involution defined in Proposition 3.5 asµ(r, s), the corresponding

matrixM asM(r, s), and the complementary summandC asB(r, s).
Corollary 3.7. For any fixed involutions of B, the mappingr 7→ B(r, s) is a bijection
from Hom(B,A) onto complementary summands ofA in G and the mappingr 7→
M(r, s) is a bijection ofHom(B,A) onto involutions ofG fixingA.

Now let θ : Aut(G) → Aut(H) be a good isomorphism and letβ ∈ Aut(H) be the
image underθ of µ(0,−1). Thenβ is a non–trivial involution ofH. Let C = Hβ and
D = H−β so thatH = C⊕D and, with respect to this decomposition,β is represented

by M ′ =

[
1 0
0 −1

]
. By our remarks above, every complementary summand toC in

H has the formD(r′, s′) for some decomposition pair(r′, s′) ∈ Hom(D,C) × E(D).
Furthermore, every involution in Aut(H) fixing C has the formM ′(r′, s′) for such a
decomposition pair.
Proposition 3.8. With the notation above,

(i) for each decomposition pair(r, s) ∈ Hom(B,A)× E(B), M(r, s)θ = M ′(r′, s′)
for some decomposition pair(r′, s′) ∈ Hom(D,C)× E(D).

(ii) the mapping(r, s) 7→ (r′, s′) is a bijection.

(iii) if s = −1 thens′ = −1. In particular, if B is indecomposable, thenB′ is in-
decomposable.

Proof. (1) Let G = A ⊕ B and(r, s) be a decomposition pair, so thatM(r, s) is an
involution ofG which fixesA. Let M(r, s)θ = β ∈ Aut(H). We have seen thatH has
a decompositionC ⊕D for whichβ = M ′(r′, s′) for some decomposition pair(r′, s′).

(2) Since(r′, s′) is determined uniquely by(r, s) andvice versa, the correspondence
is a bijection.

(3) We have seen that the correspondence maps(r,−1) to (r′,−1).
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4 Automorphisms of squares of groups

We now consider the case in whichG = A2. Throughout this section, whose two
theorems are the main results of this paper,G andH are 2-divisible groups andθ :
Aut(G) → Aut(H) is a good isomorphism. Furthermore,G = A ⊕ A is a fixed

decomposition ofG, andµ ∈ Aut(G) has matrixM =

[
1 0
0 −1

]
with respect to this

decomposition. Letν = µθ and letH = C ⊕D be the corresponding decomposition
of H so that by Corollary 3.4 the matrix ofν with respect to this decomposition is also
M .

Now Aut(G) contains an involution of a different type, namelyχ which maps the
first copy ofA identically onto the second andvice versa. The corresponding matrix is

X =

[
0 1
1 0

]
, which has the following properties:

(i) For all (a, b) ∈ G, (a, b)X = (b, a).
(ii) For all decomposition pairs(r, s), XM(r, s)X is an involution fixing the second

copy ofA.

(iii) XM = −MX.
Theorem 4.1.LetG = A⊕A, H = C⊕D andχ be as described in the two paragraphs
above and letλ = χθ. Then the matrix ofλ with respect to this decomposition ofH is

L =

[
0 b

b−1 0

]
for some isomorphismb : C → D.

Proof. Let λ have matrixL =

[
a b

c d

]
with respect to the decompositionH = C ⊕D.

Sinceθ is a group isomorphism, by (3) above,ML = −LM , so[
a b

−c −d

]
=

[
−a b

−c d

]

Since End(C) and End(D) are torsion–free, this implies thata = 0 = d. SinceL
represents an involution, it follows thatc ∈ Hom(D,C) is an isomorphism with inverse
b ∈ Hom(C,D).

Theorem 4.1 shows that ifG = A2 andH are 2–divisible groups with Aut(G) ∼=
Aut(H), thenH = B2 for some groupB and there is a good isomorphismθ : Aut(G) →
Aut(H) which maps the involution corresponding to a fixed decompositionG = A⊕A
to the involution corresponding to a fixed decompositionH = B ⊕ B. But as yet, we
have found no relationship betweenA andB. We now construct an additive isomorph-
ism from End(A) to End(B).
Theorem 4.2.LetG = A2 andH = B2 be 2–divisible groups withAut(G) ∼= Aut(H).
Then there exists an isomorphismθ : Aut(G) ontoAut(H) inducing an additive iso-
morphismφ : End(A) → End(B).
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Proof. By Proposition 3.8 there is a good isomorphismθ : Aut(G) → Aut(H) which

induces the matrix bijection

[
1 0
r −1

]
7→

[
1 0
r′ −1

]
, and hence by Corollary 3.4 the

matrix bijection

[
1 0
r 1

]
7→

[
1 0
r′ 1

]
.

Defineφ : End(A) → End(B) by r 7→ r′. Since[
1 0

r + s 1

]
=

[
1 0
r 1

] [
1 0
s 1

]
φ is an additive homomorphism which is clearly bijective.

5 The action ofθ on subgroups ofAut(G)
In the final two sections of this paper, we no longer need the hypotheses thatG andH
are torsion–free and 2–divisible so we replace them by the weaker conditions thatG
andH are abelian groups satisfyingG = A2, H = B2 andθ : Aut(G) → Aut(H)

is an isomorphism mapping

[
1 0
0 −1

]
in Aut(G) to

[
1 0
0 −1

]
in Aut(H). All matrices

are with respect to fixed decompositionsG = A⊕A andH = B⊕B, so we can regard
θ as mapping matrices to matrices.

By the fundamental homomorphism theorems,θ maps the lattice of subgroups and
the lattice of normal subgroups of Aut(G) to isomorphic lattices of subgroups and nor-
mal subgroups in Aut(H). Call a subgroupX of a subgroupY of Aut(G) functorial if
there is a sub-functor of the identityF on the category of groups such thatX = F (Y ).
ThenXθ = F (Y θ). Examples includeF (Y ) = Z(Y ), the center ofY, CAut(G)(Y ), the
centralizer ofY andNAut(G)(Y ) the normalizer ofY . More generally, for allX ≤ Y
in Aut(G), (CY (X))θ = (CY θX)θ and similarly for normalizers.

Unfortunately the special subgroups familiar in Linear Algebra and Geometry may
not be defined in the present context, and need not be preserved byθ when they are.
Nevertheless, some are defined and preserved.

We first consider centralizers of involutions. Recall thatα ∈ Aut(G) is the invol-

ution with matrixM =

[
1 0
0 −1

]
and thatθ mapsM to a matrix of the same form as

M . Henceθ mapsCAut(G)(M) → CAut(H)(M). It is easy to see thatCAut(G)(M) =[
Aut(A) 0

0 Aut(A)

]
∼= Aut(A) × Aut(A) and similarly,CAut(H)(M) ∼= Aut(B) ×

Aut(B), so that Aut(A)× Aut(A) ∼= Aut(B)× Aut(B).
Question 5.1. Does this imply Aut(A) ∼= Aut(B)?

Now consider the corresponding result for the involutionsN =

[
0 1
1 0

]
andK =
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[
0 b

b−1 0

]
∈ Aut(H). A simple calculation shows

Proposition 5.2. With the notation above,θ maps

CAut(G)(N) =

{[
a b

b a

]
∈ Aut(G)

}
to

CAut(H)(K) =

{[
x y

b−1yb−1 b−1xb

]
∈ Aut(H)

}

We now consider the isomorphism of the centres of the automorphism groups
Aut(G) and Aut(H).

Proposition 5.3. Z(Aut(G)) =

{[
a 0
0 a

]
: a ∈ Z(E(A)) ∩ Aut(A)

}
and there exists

an isomorphismφ : Z(E(A)) ∩ Aut(A) → Z(E(B)) ∩ Aut(B) such that

[
a 0
0 a

]
θ =[

aφ 0
0 aφ

]
Proof. The description of the center of Aut(G) follows from routine calculations.

Since the center is a functorial subgroup,Z(Aut(G)θ = Z Aut(H). Defineφ :

Z(E(A)) ∩ Aut(A) → Z(E(B)) ∩ Aut(B) by aφ = b if

[
a 0
0 a

]
θ =

[
b 0
0 b

]
. Thenφ

is a multiplication preserving bijection.

Corollary 5.4. LetA andB be abelian groups with commutative endomorphism rings.
ThenAut(A2) ∼= Aut(B2) impliesAut(A) ∼= Aut(B).

By considering the example of rational groups of idempotent type, one can see that
the converse of Corollary 5.4 generally fails.

6 Triangular subgroups

We now consider the properties of triangular subgroups of Aut(G), defined as follows.

An elementX ∈ Aut(G) is calledupper triangularif it has the formX =

[
r s

0 t

]
.

Note that ifX is upper triangular, then necessarilyr and t ∈ Aut(A). A subgroup
is upper triangular if all its elements are. The set of all such matrices withr and t
in Aut(A) and s ∈ E(A) is a subgroup of Aut(G) called thefull upper triangular
subgroup. Similarly, we can define lower triangular elements and subgroups. All the
following examples have lower triangular counterparts.
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It is not true that the triangular property of automorphisms is preserved byθ, but
several useful properties of triangular automorphisms are.

Let T = T (G) denote the group of upper triangular matrices in Aut(G). We shall
describe the lattices of subgroups and normal subgroups ofT in terms of subgroups
of Aut(A) × Aut(A) acting onE(A). Let (B,C) ≤ Aut(A) × Aut(A). Then(B,C)
is a double operator onE(A) in the sense that for all(b, c) ∈ (B,C) and for alls ∈
E(A), bsc ∈ E(A) is defined byx(bsc)) = ((xb−1)s)c ∈ A. A (B,C) moduleJ in
E(A) is an additive subgroup ofE(A) closed under the double operator(B,C).

This seemingly obscure structure is simply the multiplicative version of a bi–module;
in factJ is a(B,C) module if and only ifJ is a leftZ[B]–rightZ[C] -bimodule over the
group ringsZ[B] andZ[C]. For example, every ideal ofE(A) is an(Aut(A), Aut(A))
module. However, not every(B,C) module is an ideal; for example, letJ be the cyc-
lic additive subgroup ofE(A) generated by the identity map. ThenJ is a{1} × {1}
module. The importance of this concept is that(B,C) modules can be used to classify
all subgroups and normal subgroups ofT .
Proposition 6.1. LetU ≤ T . Then there exists a unique subgroup(B,C) ≤ Aut(A)×
Aut(A) and a unique(B,C) moduleJ of E(A) such that

U =

{[
b s

0 c

]
: (b, c) ∈ (B,C) ands ∈ J

}
.

Conversely, each suchU is a subgroup ofT .
Furthermore,U E T if and only ifB E Aut(A) andC E Aut(A).

Proof. Let

[
b s

0 c

]
and

[
u v

0 w

]
∈ U . Then

[
b s

0 c

] [
u v

0 w

]
=

[
bu bv + sw

0 cw

]
and

[
r s

0 t

]−1

=

[
r−1 −r−1st−1

0 t−1

]
SinceU ≤ T , the set of diagonals of elements ofU is closed under multiplication

and inverses, so form a subgroup(B,C) of Aut(A) × Aut(A). Furthermore, the set
of entries in the north-east corners of elements ofU is closed under addition and the
action of(B,C), so form a(B,C) module. Conversely, ifU satisfies these conditions,
thanU is a subgroup ofT .

By the description of multiplication above,U is normal if and only ifB andC
are.

By conjugation with the matrix

[
0 1
1 0

]
, we obtain an equivalent characterization

of lower triangular subgroups of Aut(G).
The following examples will play a significant rôle in the sequel.
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Examples 6.2. (i) If (B,C) = Aut(A)× Aut(A) andJ = E(A) we recoverT .

(ii) If (B,C) = ({1}, {1}) andJ = E(A), we have the groupE(G) of upper trans-
vections in Aut(G).

(iii) Let Z = Z(E(A)) ∩ Aut(G), and let(B,C) be the diagonal ofZ × Z andJ =
E(A). Then we have the group

F (G) =

{[
a b

0 a

]
: a ∈ Z, b ∈ E(A)

}
.

Note that for fixed(B,C) the set of(B,C) submodules ofE(A) is a lattice under
inclusion, and we have the following description of subgroups and normal subgroups
of T . To simplify the notation, denote byT ((B,C), J) the subgroup ofT described in
Proposition 6.1.

Proposition 6.3. LetB ≤ B′ andC ≤ C ′ be subgroups ofAut(A)×Aut(A) and letJ
be a(B,C) submodule of the(B′, C ′) moduleJ ′. ThenT ((B,C), J) ≤ T ((B′, C ′), J ′).

Moreover, ifB E B′ andC E C ′ thenT ((B,C), J) E T ((B′, C ′), J ′).

Proof. This is an immediate consequence of the definitions.

Corollary 6.4. For fixed(B,C), the latticeJ of (B,C) modules determines a lattice
of subgroupsT ((B,C),J ) = {T ((B,C), J) : J ∈ J } of subgroups ofAut(G). If B
andC are normal inAut(A), thenT ((B,C),J ) is a lattice of normal subgroups.

Examples 6.5. (i) Taking (B,C) = ({1}, {1}) andJ the lattice of additive sub-
groups ofE(A) we obtain a lattice of normal subgroups of Aut(G) isomorphic to
the lattice of additive subgroups ofE(A).

(ii) Taking(B,C) = Aut(A)×Aut(A) andJ the lattice of ideals ofE(A), we obtain
a sublattice of (1) isomorphic to the lattice of ideals ofE(A).

In the following proposition,F (G) andE(G) are the subgroups of Aut(G) defined
in Examples 6.2 (2) and (3).

Proposition 6.6. (i) F (G) is an abelian subgroup ofAut(G), normal inT (G).

(ii) F (G) is the direct productZ(Aut(G))× E(G).

Proof. (1) It is clear thatF (G) is commutative. By Proposition 6.1,F (G) E T (G).

(2) Z(Aut(G)) ∩ E(G) = {I2} and

[
r s

0 r

]
=

[
r 0
0 r

] [
1 r−1s

0 1

]
with

[
r 0
0 r

]
∈

Z(Aut(G)) and

[
1 r−1s

0 1

]
∈ E(G).

Matrices inF (G) can be characterized as follows.

Lemma 6.7. Let M ∈ Aut(G). ThenM ∈ F (G) if and only ifE(G) ≤ CAut(G)(M),
the centralizer ofM in Aut(G).
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Proof. Note thatE(G) ≤ CAut(G)(M) if and only if for all

[
a b

c d

]
∈ Aut(G) and all

s ∈ E(A),

[
1 s

0 1

] [
a b

c d

]
=

[
a b

c d

] [
1 s

0 1

]
.

But this is true if and only ifc = 0 anda = d ∈ Z(E(A)) or equivalently, if and
only if

M ∈ F (G) =

{[
a b

0 a

]
: a ∈ Z(E(A)) ∩ Aut(A), b ∈ E(A)

}
.

Corollary 6.8. LetF (G) < H ≤ Aut(G). ThenH is not commutative.

Proof. Indeed, ifM ∈ H \ F (G) there is transvectionX ∈ E(G) ≤ F (G) < H such
thatMX 6= XM .

Recall that a subgroup is calledmaximal abelian if it is maximal among all the
abelian subgroups andabelian maximal if it is abelian and maximal among all sub-
groups. Of course, every abelian maximal subgroup is maximal abelian but the con-
verse may fail.
Corollary 6.9. F (G) is a maximal abelian subgroup inAut(G).

The next result is folklore
Lemma 6.10. Let H ≤ G. ThenH = CG(H) if and only ifH is a maximal abelian
subgroup ofG.
Corollary 6.11. F (G) = CAut(G)(F (G)).

At last we have a property of Aut(G) thatθ transfers to Aut(H).
Corollary 6.12. The imageF (G)θ is a maximal abelian subgroup inAut(H).

Of course this does not yet imply thatF (G)θ = F (H), just that they are both
maximal abelian subgroups of Aut(H). However, we may conclude:
Theorem 6.13. LetA be the class of all abelian groupsA such thatAut(A ⊕ A) has
a unique maximal abelian subgroup. IfA, B ∈ A, thenAut(A ⊕ A) ∼= Aut(B ⊕ B)
impliesEnd(A) ∼= End(B).

Proof. By Corollary 6.12 and the hypothesis,F (G)θ = F (H). By Proposition 6.6,
F (G) = Z(Aut(G)) × E(G) implies F (H) = Z(Aut(H)) × E(G)θ and since also
F (H) = Z(Aut(H))×E(H), these direct complements are isomorphic. Hence finally
E(G) ∼= E(H). It remains only to use the additive embedding

fA : End(A)−→E(G), s 7→

[
1 s

0 1

]
,

yielding the isomorphism End(A) fA−→ E(G) −→ E(H)
(fB)−1

−→ End(B).
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Remark 6.14. LetA′ be any class of abelian groups such that for every groupG ∈ A′,
all maximal abelian subgroups in Aut(G) are isomorphic and we can cancelZ(Aut(G))
from direct products. Then again, by the proof above, Aut(A ⊕ A) ∼= Aut(B ⊕ B)
implies End(A) ∼= End(B).

In another direction, notice that Lemma 6.7 above gives a little more than Corollary
6.9:
Proposition 6.15.Among all the abelian subgroups ofAut(G) containingE(G), F (G)
is the greatest(i.e.,E(G) ≤ L ≤ Aut(G), L abelian, impliesL ≤ F (G)).

Proof. By contradiction: ifL " F (G), there is a matrixM ∈ L such thatM /∈ F (G).
By Lemma 6.7, there is a transvectionX ∈ E(G) with MX 6= XM and soH is not
commutative.
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