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1 Introduction and Notation

Let A be an abelian group. We say thatis determined in a categoyt of abelian
groups by its endomorphism ring if whenevBre A has the property that(A) =
&(B) as rings, theM = B as abelian groups. Similarly, we say thais determined
in A by its automorphism group if whenev& € A has the property that AGt) =
Aut(B) as groups, thed = B as abelian groups.

Usually a group is determined neither by its automorphism group nor its endo-
morphism ring in a non—trivial category of torsion—free abelian groups closed under
isomorphisms. However, ifl is a rational group of idempotent type, that is, a subring
of the rational numbers, thetis determined by its endomorphism ring in the category
of rational groups of idempotent type, [MS00]. In fact, sintés determined by the
set of primes for whichpA = A, Ais even determined by its additive endomorphism
group EndA) in this category. On the other handljs determined by its automorphism
group in the same category onlyAf =~ Z, whereaq) is determined by A{tQ) in the
category of torsion—free divisible groups, as well as by [Endn the same category.

Of course, ifA is determined in a given category by Aut) or End A4), then it is also
determined by (A).

A new phenomenon was considered by the first author in [Cal06]. He shows that
more information about! is sometimes provided by A(#?) = Aut(A @ A). For
example, ifA and B are rational groups of idempotent type and both are divisible
by exactlyn primes, where: is a positive integer or infinity, then always Aut) =
Aut(B) [MSO00, Proposition 4.3], and the following are equivalent:

(i) Aut(A?) = Aut(B?)

(i) End(A) = End B)
(i) A andB are both are divisible by the same sets of primes.
(vy A2 B

We say thatd is determined in a categoty by its square automorphism group if
wheneverH < A has the property that AGt?) = Aut(H) as groups, thell = B2
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with A = B as abelian groups. Similarlyl is determined in a categony by its
square endomorphism ring, if whenevérc A has the property that(A?) = £(H)

as rings, therd = B? with A = B as abelian groups. Determination by the square
endomorphism group Ed?) can be similarly defined.

Itis the purpose of this paper to investigate this phenomenon. There are well known
examples in the literature [F70, Theorem 90.3] of non—isomorphic indecomposable
torsion—free groups! and B for which A% = B2, so in general Ayt4?) = Aut(B?)
does not imply thatd = B.

One could also consider groups determined by the automorphism group of higher
powers; for example, Hahn and O’'Meara [HO'M89, 3.3.8 and 3.3.11] showedithat
is determined by AytA™) for all » > 3 in the category of abelian groups whose endo-
morphism ring is a principal ideal domain, and Krylov et al [KMT03] showed that
is determined by AytA™) for all » > 4 in the category of abelian groups whose en-
domorphism ring is commutative. However, in this paper we only consider the square
case.

Although we have not obtained definitive results on the structure of groups determ-
ined by their square automorphism groups, we have found several properties of pairs of
groups whose square automorphism groups are isomorphic. The main result is that if
A and H are torsion—free abelian groups divisible by 2 such that Atit = Aut(H),
thenH = B? for some groups such that Enfi4) = End(B). Furthermore, we show
that in this case, AU#) x Aut(A) = Aut(B) x Aut(B).

ConsequentlyA is determined by its square automorphism group in the category
of torsion—free abelian groups i is determined by its endomorphism group in that
category. We also pose some intriguing questions which will be the subject of further
research.

Of course, the fact that Eqd) =~ End B) does not imply that(A) = £(B) is
well known. As long ago as 1959, Sasiada [S59] found examples of rank 2 torsion—
free groupsA and B, A being completely decomposable, satisfying the former but not
the latter. Nowadays, such examples are easy to construct using the methods of Mader
[MOO, Section 15.2].

The notation is mostly standard as in [F70]. In particutadenotes the group or
ring of integers and) the group or ring of rationals. Unless specifically excepted, the
word group will denote a torsion—free abelian group. We use the common synbol
for group, abelian group or ring isomorphism, the meaning being specified when it is
ambiguous. SimilarlyZ(X) denotes the center of the group or rifgand X ¢ Y is
the direct sum or direct product of groups or ringandY’.

Let G = A ® B be a direct sum of group$ and B. Then&(G) can be represented

EndA) Hom(A4,B)

Hom(B, A) EndB) | the action being given by

by the ring of 2x 2 matrices[

u

(a.b) [;"

In particular, ifG = A2, then we can represefitG) by M = M(2,£(A)), the ring
of 2 x 2 matrices with entries froréi(A), where the slight abuse of notation causes no

81 = (ar + bt,as + bu) for all (a,b) € G.
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harm. It is straightforward to verify that GR, £(A)) = Aut(A?) corresponds to the
group of invertible matrices in1.

In general, we denote abstract automorphisnms bfy Greek lower case letters, but
their representation by matrices by capital Latin letters, so for example an automorph-

u

In accordance with common practice in group theory, function names are written
on the right of their arguments but functor names are written on the left. For example,
Z(Aut(A)) denotes the center of Aut) and Z(£(A)) the center of€(A). In par-
ticular, if F' is a sub—functor of the identity in the category under consideration and
f € Hom(A, B) thenF(A)f C F(B).

When X andY are groups, abelian or not, the notati®n< Y means tha¥ is a
subgroup oft” and X <Y means tha¥ is a normal subgroup &f. WhenX <Y,

isma is represented byl = [Z s].

Cy(X)={yeY: :yz=uayforalz e X}
is the centralizer o in Y and
My (X)={yeY:ylaye Xforalze X}

is the normalizer oX in Y.
For any unital ringk, R* denotes the additive group & andU ( R) the unit group
of RsothatU(M(2,E(A))) = GL(2,E(A)).

2 Properties of automorphism groups preserved by an iso-
morphism

In this section, we pose several naturally arising questions concerning these properties.
Throughout the section4 is a group divisible by 2(¢ = A% andé : Aut(G) —
Aut(H) is an isomorphism. Note that in general, Afand B are groups such that
2A = A, Aut(A) = Aut(B) does not imply that B = B, which prompts our first
guestion:
Question 2.1. For whichG = 2G does it follow thaty maps multiplication by 2 onto
mutiplication by 27?

Because of the result of the first author cited above, the answer is affirmative for
a rank 1 group of idempotent type. Incidentally, 2—divisibility isadditive property
of groups, but in our situation, it can be determined multiplicatively.

11 |1 s
0 1| 1|0 1

Proof. If 2 is an automorphism af then A is also 2—divisible so there exists £(A)

2
Proposition 2.2. 2 is an automorphism af if and only ifY =

for somes € £(A).

2
such that 2 = 1. Hence[1 81 = [1 2 =Y.

01 0 1
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1 0 1= Y, then 1= 2sin Aut(A) so A and hence

are 2—divisible. 0

2
Conversely, ifé S] = [1 2

There is a similar criterion using” (Y transpose), but these results are not strong
enough to settle Question 2.1.

Since orders and centralizers of automorphisms are preserved by isomorphisms,
it is important to consider special elements@®ffor which these characteristics are
known. For example;-1 is a central automorphism @f of order 2, so(—1)d is a
central automorphism dff of order 2. Hence one may ask:

Question 2.3. When is(-1)0 = —17?

This question will be discussed further in Section 3. Other special automorphisms
of G whose algebraic properties are reflected in(&ltinclude

i X = [(1) é] and its additive inverse X of order 2.
. 0 1 " L e
(i) z = 10 of order 4. Its additive and multiplicative inverse coincide.

Note that conjugation by and Z map upper triangular elements and subgroups to
lower triangular elements and subgroups, while conjugatiol lpyeserves upper and
lower triangularity.

3 Involutions

In this section(G is a 2—divisible group and’ is a group such that A(E) = Aut(H).

An involution i of G is an automorphism of order 2. As shown in [F73, Section
113], 1 determines a decompositigh= G* & G~* whereG" = {x € G : zp = z}
andG * = {x € G : zp = —x}. Conversely, every decompositi@gh = A ¢ B
determines an involutiop for whichG* = A andG~* = B, namelyy = 274 — 1
wherer 4 is the projection of7 along B onto A.

If G is any group, then the involutionl of G is called thetrivial involution since
the corresponding decomposition ist0G. The importance of involutions for our
problem is thatib : Aut(G) — Aut(H) is an isomorphism, thehmaps involutions of
G onto involutions ofH. This in itself does not imply that non—trivial decompositions
of G induce non—trivial decompositions &f or vice versafirstly becauséd may not
be 2—divisible and secondly becausel)d may not equal-1.

We now assume in the rest of this section tHais 2—divisible and study the image
of the central involution-1 underd. Lets = (—1)§. We calld goodif 5 = —1,
otherwisebad

Proposition 3.1. LetG and H be 2—divisible groups and lét: Aut(G) — Aut(H) be
an isomorphism. I# is bad, then there are decompositicis= A® B, H =C ® D
such thatd and B are fully invariant inG andC and D are fully invariant inH.
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Proof. Sinceé is bad,s is a non—trivial involution and hencl has a decomposition

H = HP ¢ H—P with respect to which has the matrix forr{é 01] . LetC = H”

andD = H=5.
Since g is central in AutH), / commutes with all automorphisms of the form
1 . S
0 i with s € Hom(C, D). But this implies that = —s for all s € Hom(C, D)

and hence Horf, D) = 0 soC is fully invariant in H. Similarly, by considering
automorphisms of the for : 2 with ¢ € Hom(D, C') we conclude thabD is fully

invariantinH.

Now consider-1 € Aut(H) anda = (—1)6~1. Sincea # —1, a is a non-trivial
central involution in AufG), so by the same argument, we conclude that A © B
with A and B fully invariant in G. 0

Now for the good news. Even thoughmay not map-1 to —1, it can always be
perturbed to do so.

Proposition 3.2. If Aut(G) = Aut(H) then there exists a good isomorphigm:
Aut(G) — Aut(H).

Proof. Letd : Aut(G) — Aut(H) be anisomorphism. Lét-1)0 = 3. If 3 # —1then
by Proposition 3.1H = C @ D such that3|C = 1 andj3|D = —1. Lety € Aut(H)
act as—1 onC and the identity orD. Then¢ = 3 o « is an isomorphism of A7)
onto Aut /) which maps-1 to—1. 0

Proposition 3.2 has some useful consequences.
Corollary 3.3. If Aut(G) = Aut(H) then there is an isomorphisgh : Aut(G) —

Aut(H) such that for alle € Aut(G), (—a)e = —(ad). O
Corollary 3.4. Let6 : Aut(G) — Aut(H) be a good isomorphism, and &t =
A @ B be any non-trivial decomposition 6f. Let« with matrix M = (1) 01 be

the involution corresponding to this decompositioncbf Then there is a non—trivial
decompositiorH = C ¢ D such thataf has the same matrix/ with respect to this
decomposition. 0

Given a non-trivial decompositigii = A® B of GG, we are interested in involutions
v for whichG* = A andG~" = C for some different complementary summatnidA
pair (r, s) € Hom(A, B) x £(B) is called adecomposition paiif (1+ s)r = 0 ands is
an involution in Aut B). Decomposition pairs are used to classify the decompositions
of G for which A is fixed as the first summand.

Proposition 3.5. Let G = A @ B. Then any involution fixingl corresponds to a

matrix of the formM = [l 0 for some decomposition pair, s). Conversely, if
T S
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10 - . . .
M = for some decomposition paff, s) then M is the matrix corresponding
r S

to an involution fixingA.

Proof. Let M be an involution fixing{(a,0) : a € A}, so its first row has the form

(1,0). HenceM = 10 for some pair(r, s) € Hom(B, A) x £(B). ThenM? =1
r S
implies that(1 + s)r = 0 ands? = 1. M # I implies thats # 1. Hence(r, s) is a
decomposition pair.
Conversely, any suchi/ is an involution andG = M™ & M~ whereM™ =
{(a,0) € G: aec A} andM~ = {(a,b) € G : br = —2a andbs = —b}.
0

Remarks 3.6. (i) s = —1 for all decomposition pairs if and only B is directly
indecomposable.
(i) (r,—1) is a decomposition pair for anye Hom(B, A).
(iiiy The given decompositio@ = A? corresponds to the decomposition p@iy—1).
(iv) We refer to the involution defined in Proposition 3.54s, s), the corresponding
matrix M asM (r, s), and the complementary summagicas B(r, s).
Corollary 3.7. For any fixed involutiors of B, the mapping — B(r, s) is a bijection
from Hom(B, A) onto complementary summands4fin G and the mapping: +—
M(r, s) is a bijection ofHom(B, A) onto involutions of7 fixing A. O
Now let6 : Aut(G) — Aut(H) be a good isomorphism and lete Aut(H) be the
image undep of 1(0, —1). Theng is a non-trivial involution ofH. LetC = H? and
D = H-# sothatd = C' @ D and, with respect to this decompositighis represented
1
0 -1
H has the formD(+/, s") for some decomposition pair’, s") € Hom(D,C) x £(D).
Furthermore, every involution in A ) fixing C' has the formM’(+/, s’) for such a
decomposition pair.
Proposition 3.8. With the notation above,
(i) for each decomposition pair, s) € Hom(B, A) x £(B), M(r,s)0 = M'(r',s")
for some decomposition pair’, s’) € Hom(D, C') x £(D).
(i) the mappingr, s) — (', s’) is a bijection.
(iii) if s = —1thens’ = —1. In particular, if B is indecomposable, theR’ is in-
decomposable.

by M’ = . By our remarks above, every complementary summard iio

Proof. (1) LetG = A @ B and(r, s) be a decomposition pair, so thaf(r, s) is an
involution of G which fixesA. Let M (r, s)0 = 3 € Aut(H). We have seen thdf has
a decompositio’ @ D for which 3 = M’ (+', s") for some decomposition p&jr’, s’).
(2) Since(r’, s’) is determined uniquely bir, s) andvice versathe correspondence
is a bijection.
(3) We have seen that the correspondence rapsl) to (r/, —1). 0
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4 Automorphisms of squares of groups

We now consider the case in which = A2. Throughout this section, whose two
theorems are the main results of this pagerand H are 2-divisible groups ané :
Aut(G) — Aut(H) is a good isomorphism. Furthermor@, = A @ A is a fixed

" : 1 : :
decomposition of7, andu € Aut(G) has matrix)M = 0 01 with respect to this

decomposition. Let = uf and letH = C @ D be the corresponding decomposition
of H so that by Corollary 3.4 the matrix ofwith respect to this decomposition is also
M.
Now Aut(G) contains an involution of a different type, namelywhich maps the
first copy of A identically onto the second amnite versa The corresponding matrix is
1] , which has the following properties:

- [0
10
(i) Forall(a,b) € G, (a,b)X = (b,a).

(i) For all decomposition pairg, s), XM (r,s)X is an involution fixing the second
copy of A.

(i) XM =-MX.
Theorem4.1.LetG = A®A, H = C®D andy be as described in the two paragraphs
above and led = x6. Then the matrix ok with respect to this decomposition gfis

0 : .
L= L’_l g] for some isomorphisi: C' — D.

Proof. Let \ have matrix. = | Z with respect to the decompositidgh = C & D.
C

Sinced is a group isomorphism, by (3) above,L. = —LM, so

I

Since EndC) and EndD) are torsion—free, this implies that= 0 = d. SinceL
represents an involution, it follows that Hom(D, C) is an isomorphism with inverse
b € Hom(C, D). O

Theorem 4.1 shows that @ = A2 and H are 2—divisible groups with A(&) =
Aut(H), thenH = B2 for some grougB and there is a good isomorphigm Aut(G) —
Aut(H) which maps the involution corresponding to a fixed decomposttien A® A
to the involution corresponding to a fixed decompositibr= B & B. But as yet, we
have found no relationship betwedrand B. We now construct an additive isomorph-
ism from End A) to End B).

Theorem 4.2.LetG = A2andH = B? be 2—divisible groups witAut(G) = Aut(H).
Then there exists an isomorphigm Aut(G) onto Aut(H) inducing an additive iso-
morphismg : EndA) — End(B).
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Proof. By Proposition 3.8 there is a good isomorphigm Aut(G) — Aut(H) which

r -

induces the matrix bijectior[1 011 — [1 0 ] , and hence by Corollary 3.4 the
T

matrix bijection 1o — 1 0.
r 1 v 1

Define¢ : End A) — End(B) by r — r’. Since

1 0 |1 010
r+s 1| |r 1] |s 1
¢ is an additive homomorphism which is clearly bijective. 0

5 The action of@ on subgroups ofAut(G)

In the final two sections of this paper, we no longer need the hypotheseas mat
are torsion—free and 2—divisible so we replace them by the weaker conditions that
and H are abelian groups satisfying = A%, H = B? andd : Aut(G) — Aut(H)

is an isomorphism mappin L 01 in Aut(G) to é 01 in Aut(H). All matrices

are with respect to fixed decompositiagis= A¢ A andH = B B, so we can regard
# as mapping matrices to matrices.

By the fundamental homomorphism theorehmaps the lattice of subgroups and
the lattice of normal subgroups of Ad) to isomorphic lattices of subgroups and nor-
mal subgroups in Adt). Call a subgroupX of a subgroug” of Aut(G) functorial if
there is a sub-functor of the identify on the category of groups such that= F(Y).
ThenX6 = F(Y6). Examples includé’(Y') = Z(Y'), the center ot’, Cay)(Y), the
centralizer ofY” and Nayy()(Y") the normalizer of”. More generally, for allX <Y
in Aut(G@), (Cy(X))8 = (CyeX )0 and similarly for normalizers.

Unfortunately the special subgroups familiar in Linear Algebra and Geometry may
not be defined in the present context, and need not be presended/gn they are.
Nevertheless, some are defined and preserved.

We first consider centralizers of involutions. Recall that Aut(G) is the invol-

. . . 1 .
ution with matrixM = [0 01 and that? mapsM to a matrix of the same form as

M. Hencet mapsCayc)(M) — Cawm)(M). Itis easy to see thalyq) (M) =
Aut(A) 0
0 Aut(A)
Aut(B), so that AutA) x Aut(A) = Aut(B) x Aut(B).
Question 5.1. Does this imply AufA) = Aut(B)?

= Aut(A) x Aut(A) and similarly, Cays) (M) = Aut(B) x

. . . . 1
Now consider the corresponding result for the involutidhs= [2 01 andK =
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0 b , ,
[b—l ol € Aut(H). A simple calculation shows

Proposition 5.2. With the notation above, maps

a b
CAut(G)(N) = { [b a

z Yy
C K) =
Aut(e) () {[b—lyb—l b=1zb

€ Aut(G)} to

€ Aut(H)}

ad

We now consider the isomorphism of the centres of the automorphism groups
Aut(G) and Aut H).

Proposition 5.3. Z(Aut(GQ)) = { [g O} taeZ(E(A)N Aut(A)} and there exists
an isomorphisng : Z(£(A)) NAut(A) — Z(£(B)) N Aut(B) such thatlg 0] 0=
a

ap O
0 a¢
Proof. The description of the center of Ad¥) follows from routine calculations.
Since the center is a functorial subgroup(Aut(G)0 = Z Aut(H). Define¢ :

Z(£(A)) N AUt(4) — Z(£(B)) N Aut(B) by ag — b if [“ Oy - [b 0

. Then
0 a 0 b ¢

is a multiplication preserving bijection.

Corollary 5.4. Let A and B be abelian groups with commutative endomorphism rings.
ThenAut(A?) = Aut(B?) impliesAut(A) = Aut(B). O

By considering the example of rational groups of idempotent type, one can see that
the converse of Corollary 5.4 generally fails.

6 Triangular subgroups

We now consider the properties of triangular subgroups of &ytdefined as follows.
r s
E
Note that if X is upper triangular, then necessarilyand¢ € Aut(A). A subgroup
is upper triangular if all its elements are. The set of all such matrices méhd ¢
in Aut(A) ands € £(A) is a subgroup of AY(G) called thefull upper triangular
subgroup Similarly, we can define lower triangular elements and subgroups. All the
following examples have lower triangular counterparts.

An elementX € Aut(G) is calledupper triangularif it has the formX =
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It is not true that the triangular property of automorphisms is preservel byt
several useful properties of triangular automorphisms are.

Let 7 = 7(G) denote the group of upper triangular matrices in (&gt We shall
describe the lattices of subgroups and normal subgrougsinfterms of subgroups
of Aut(A) x Aut(A) acting onE(A). Let (B,C) < Aut(A) x Aut(A). Then(B,C)
is a double operator ofi(A) in the sense that for alb,c) € (B,C) and for alls
E(A), bsc € E(A) is defined byx(bsc)) = ((zb~1)s)c € A. A (B,C) moduleJ in
E(A) is an additive subgroup @f(A) closed under the double operatét, C).

This seemingly obscure structure is simply the multiplicative version of a bi-module;
in fact.J is a(B, C') module if and only ifJ is a leftZ[ B]-right Z[C] -bimodule over the
group ringsZ[B] andZ[C]. For example, every ideal &f(A) is an(Aut(A), Aut(A))
module. However, not every3, C’) module is an ideal; for example, |étbe the cyc-
lic additive subgroup of(A) generated by the identity map. Théris a{1} x {1}
module. The importance of this concept is that C) modules can be used to classify
all subgroups and normal subgroupsrof
Proposition 6.1. LetU < 7. Then there exists a unique subgrgup C) < Aut(A) x
Aut(A) and a uniqug B, C) moduleJ of £(A) such that

U_Hg j : (b,c) € (B,C) andseJ}.

Conversely, each sudh is a subgroup of’.
Furthermore,U < 7 if and only if B < Aut(A) andC < Aut(A).

Proof. Let [b 5 and [u v e U. Then
0 ¢ 0 w
b sl |u v bu bv + sw
= and
lO c} [0 w [0 cw

-1
r S . rml —plgt
0t/ |oO 1

SinceU < 7, the set of diagonals of elementsifis closed under multiplication
and inverses, so form a subgrouB, C') of Aut(A) x Aut(A). Furthermore, the set
of entries in the north-east corners of elementg/aé closed under addition and the
action of(B, C), so form a(B, C') module. Conversely, it/ satisfies these conditions,
thanU is a subgroup of.

By the description of multiplication abové] is normal if and only if B andC
are. 0

: . . ]0 1 . . o
By conjugation with the matri 1 0] , we obtain an equivalent characterization

of lower triangular subgroups of Al).
The following examples will play a significanble in the sequel.
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Examples 6.2. (i) If (B,C) = Aut(A) x Aut(A) andJ = £(A) we recoverT .

(i) If (B,C) = ({1},{1}) andJ = £(A), we have the grou(G) of upper trans-
vections in AutG).

(i) LetZ = Z(£(A)) N Aut(G), and let(B, C) be the diagonal o x Z andJ =
E(A). Then we have the group

Note that for fixed( B, C) the set of( B, C') submodules of (A) is a lattice under
inclusion, and we have the following description of subgroups and normal subgroups
of 7. To simplify the notation, denote [&%/((B, C), J) the subgroup of described in
Proposition 6.1.

Proposition 6.3. Let B < B’ andC < C"’ be subgroups oAut(A) x Aut(A) and letJ
be a(B, C) submodule of theB’, C") moduleJ’. Then7 ((B,C),J) < T((B',C"),J").

Moreover, ifB < B’ andC < C' thenT ((B,C),J) < T((B',C"),J").

Proof. This is an immediate consequence of the definitions. 0

Corollary 6.4. For fixed(B, C), the lattice7 of (B, C') modules determines a lattice
of subgroups ((B,C),J) =4{7((B,C),J) : J € J} of subgroups oAut(G). If B
andC are normal inAut(A), then7 ((B,C), J) is a lattice of normal subgroups. O

Examples 6.5. (i) Taking (B,C) = ({1},{1}) and J the lattice of additive sub-
groups of€(A) we obtain a lattice of normal subgroups of A@) isomorphic to
the lattice of additive subgroups 6fA).

(i) Taking(B,C) = Aut(A) x Aut(A) and.J the lattice of ideals of (4), we obtain
a sublattice of (1) isomorphic to the lattice of ideals£dfd).

In the following propositionF'(G) and E(G) are the subgroups of A(®F) defined
in Examples 6.2 (2) and (3).
Proposition 6.6. (i) F(G) is an abelian subgroup diut(G), normal in7 (G).

(i) F(G) isthe direct product (Aut(G)) x E(G).

Proof. (1) Itis clear thatF'(G) is commutative. By Proposition 6.E(G) < 7 (G).

(2) Z(Aut(G)) N E(G) = {I,} and [’“ s] = [r 0] [1 | with [7" 0] €
0 r 0 »||O 1 0O r
Z(Aut(G))andé 7“_115 € B(G). 0

Matrices inF(G) can be characterized as follows.

Lemma 6.7. Let M € Aut(G). ThenM € F(G) if and only if E(G) < Cauye)(M),
the centralizer of\/ in Aut(G).
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Proof. Note thatE(G) < Cauye) (M) if and only if for all “ Z € Aut(G) and all
C

1 s{la b |a b||1 s
0 1| |c d| |e d||0 1|

But this is true if and only it = 0 anda = d € Z(E(A)) or equivalently, if and
only if

se&(A),

a b

M e F(G) = { [0 a} fa€ Z(E(A))ﬁAut(ALbeE(A)}.

Corollary 6.8. Let F'(G) < H < Aut(G). ThenH is not commutative.

Proof. Indeed, ifM € H \ F(G) there is transvectioX € E(G) < F(G) < H such
that M X # X M. O

Recall that a subgroup is calledlaximal abelian if it is maximal among all the
abelian subgroups antbelian maximal if it is abelian and maximal among all sub-
groups. Of course, every abelian maximal subgroup is maximal abelian but the con-
verse may fail.

Corollary 6.9. F(G) is a maximal abelian subgroup #wut(G). O
The next result is folklore
Lemma 6.10. Let H < G. ThenH = C¢(H) if and only if H is a maximal abelian

subgroup of. a

Corollary 6.11. F(G) = Cauye)(F(G)). O
At last we have a property of AUF) thaté transfers to AutH ).

Corollary 6.12. The imageF'(G)0 is a maximal abelian subgroup iut(H). ad

Of course this does not yet imply that(G)6 = F(H), just that they are both
maximal abelian subgroups of Auf). However, we may conclude:
Theorem 6.13. Let .4 be the class of all abelian groups such thatAut(A @ A) has
a unigue maximal abelian subgroup. Af B € A, thenAut(A @ A) = Aut(B @ B)
impliesend(A) = End(B).

Proof. By Corollary 6.12 and the hypothesig(G)6 = F(H). By Proposition 6.6,
F(G) = Z(Aut(G)) x E(G) implies F(H) = Z(Aut(H)) x E(G)6 and since also
F(H) = Z(Aut(H)) x E(H), these direct complements are isomorphic. Hence finally
E(G) = E(H). Itremains only to use the additive embedding

fa: ENGA)—E(G). 5 [é ‘j 7

-1
yielding the isomorphism Erfd!) ELN E(G) — E(H) SLIN EndB). 0



Aut(A?) 13

Remark 6.14. Let A’ be any class of abelian groups such that for every gtoupA’,
all maximal abelian subgroups in Adt) are isomorphic and we can cancglAut(G))
from direct products. Then again, by the proof above,(Aut A) = Aut(B & B)
implies End4) = End B).

In another direction, notice that Lemma 6.7 above gives a little more than Corollary
6.9:

Proposition 6.15. Among all the abelian subgroupsAiit(G) containingE(G), F(G)
is the greatesti.e., E(G) < L < Aut(G), L abelian, implies < F(G)).

Proof. By contradiction: ifL £ F(G), there is a matriX\/ € L such thatV ¢ F(G).
By Lemma 6.7, there is a transvectiohe F(G) with M X # XM and SoH is not
commutative. 0
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