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Abstract

The paper classifies those locally finite groups having a proper nontrivial subgroup
which is comparable with any other element of the subgroup lattice.

1 Introduction

Let G be a group and let L(G) denote its subgroup lattice. The description of
groups G with L(G) a chain is well-known. In a chain, every element is comparable
with the others. This raises the natural question of seeing what can be said about
groups G having a proper nontrivial subgroup H with the property that for every
subgroup X of G one has either X � H or H � X. Such a subgroup H will be
called a breaking point for the lattice L(G). For the sake of convenience, we shall
call these groups BP-groups.

Of course, BP-groups cannot be decomposed as nontrivial direct products. More-
over, if G is a BP-group with breaking point H, then every subgroup K of G strictly
containing H is itself a BP-group with breaking point H. These simple consider-
ations are valuable in what follows and we shall use them without any further
reference.

Standard results from abelian group theory dispose of the structure of abelian
BP-groups: these are cyclic p-groups in the finite case and Prüfer p-groups Z(p∞)
in the infinite case. This focuses the discussion on nonabelian BP-groups.

As more exotic examples, the so-called extended Tarski groups, see Ol’shanskii
[3], p. 344 are also BP-groups. If G is one of these groups, the largest breaking
point is Z(G), which is a finite cyclic p-group (p is a rather large prime) and
G/Z(G) is an infinite simple p-group of exponent p (a Tarski group). These (quasi
finite) examples show that BP-groups need not be soluble, nor locally finite; the
class of BP-groups is thus large enough to warrant a more serious investigation.

We shall restrict ourselves here to the particular case of locally finite BP-groups;
the cyclic p-groups of order at least p2 and the generalized quaternion groups are
examples of finite BP-groups. As we have seen, the Prüfer p-groups exhaust the
infinite abelian BP-groups - these groups are also locally finite. But there also
exist infinite nonabelian locally finite BP-groups, as for example Szele’s group S
discussed in [2] and [6]: S = A〈x〉, where A is a Prüfer 2-group and x has order
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four, x2 is the unique element of order two of A and x acts on the normal subgroup
A by inverting all elements of A.

The main result of this note shows that the examples described above exhaust
all locally finite BP-groups:

Theorem 1.1 A locally finite BP-group is isomorphic to one of the following
groups: finite cyclic p-groups of order at least p2, generalized quaternion groups,
Prüfer groups Z(p∞) and Szele’s group S.

The notation is standard and the proofs are elementary.

2 The proof of the Theorem

We need first some general information on BP-groups.

Lemma 2.1 Let G denote a nonabelian BP-group. Then:
1) G is a p-group for some prime p and if H is a beaking point of L(G), then H is
a finite cyclic group contained in Z(G). In particular, G has a unique subgroup of
order p.
2) Z(G) is the largest breaking point of L(G).
3) If G is infinite, a proper infinite abelian subgroup A of G has finite index if and
only if A is normal in G.
4) If G is infinite and if p is odd, then a proper infinite abelian subgroup A of G
has infinite index if and only if A = NG(A).

Proof 1) Note first that if H is a breaking point for L(G) and if g ∈ G \ H, then
H is a proper subgroup of 〈g〉, whence H is cyclic and central.

We prove next that H is finite. If g ∈ G \ H, then H = 〈h〉 < 〈g〉, so we can
write h = ga for some integer a with |a| ≥ 2. Apply the same argument to the
element hg = ga+1 ∈ G \ H to obtain h = g(a+1)b for some integer b with |b| ≥ 2.

Suppose now that H is infinite. Then both 〈g〉 and 〈hg〉 = 〈g(a+1)〉 are infinite
and ga = h = g(a+1)b. One must have a = (a+1)b, for otherwise g would have finite
order, a contradiction. Elementary divisibility arguments force a = −2 and b = 2,
thus h = g−2. The above argument, applied to the element g−1 ∈ G \ H, gives
h = g2, whence the equality g2 = h = g−2, forcing g4 = 1, another contradiction.

We are now ready to show that G is a p-group. To prove this, we show first that
G is periodic. If g ∈ G \ H would be of infinite order, then 〈g〉 would contain a
nontrivial finite subgroup, namely H = 〈h〉, a contradiction. Thus G is periodic
indeed. If g ∈ G \ H, then the finite cyclic group 〈g〉 is a BP-group with breaking
point H; thus 〈g〉 is indecomposable, forcing 〈g〉 to be a p-group for some prime p.
This implies at once that G is a p-group. In particular, H is a finite cyclic p-group
and G has a unique subgroup of order p. This concludes the proof of 1).
2) Suppose that Z(G) is not a breaking point for L(G). Then there exists some
x ∈ G \ Z(G) such that Z(G) � 〈x〉. The abelian group K = Z(G)〈x〉 is not
cyclic, nor a Prüfer group, which contradicts the fact that it must have a unique
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subgroup of order p. Thus Z(G) is a breaking point for L(G). The maximality of
Z(G) follows from 1).
3) Let A be an infinite abelian subgroup of G. Note that A is not normal in G if
and only if coreG(A) is a proper subgroup of A if and only if coreG(A) is finite -
these follow from A being a Prüfer group. Also note that if A has finite index in
G, then coreG(A) has finite index in G. Thus A being not normal in G and having
finite index are contradictory.
4) Let A be an infinite proper subgroup of G, so that A is a Prüfer p-group. Then
A is a maximal abelian subgroup of G (for otherwise one would find a larger Prüfer
subgroup B containing A, which is impossible), so A = CG(A). Now NG(A)/A is
isomorphic to a subgroup of Aut(A) and by 1) this factor group is periodic. This
forces NG(A) = A since if p is odd Aut(A) has no nontrivial elements of p-power
order. This completes the proof of the Lemma. ✷

We are now in a position to give a proof of the Theorem.

Proof Let G be a locally finite BP-group. If G is finite, then either G is cyclic,
or p = 2 and G is a generalized quaternion group. This follows from the lemma
and from Satz 8.2, p. 310 of Huppert [1]. If G is infinite, then any two nontrivial
elements of G generate a finite subgroup T of G which has just one minimal sub-
group. For p odd, this subgroup T is cyclic. Thus G is abelian, which implies at
once that G ∼= Z(p∞).

We reached the stage where all locally finite BP-groups were classified, except
those which are infinite nonabelian 2-groups. From now on, G will denote a locally
finite infinite nonabelian BP-group which is a 2-group.

Since G is nonabelian, there exists a pair of non commuting elements in G which
generate a nonabelian subgroup K of G, which is a generalized quaternion 2-group.
Thus, if X is any finite subset of G, then X is contained in the subgroup L = 〈X, K〉,
which is also a generalized quaternion group. These groups are discussed in [2], p.
48, where it is proved that the unique such locally generalized quaternion group is
actually Szele’s group S described in the introduction. This concludes the proof of
the Theorem. ✷

3 Final remarks

1) Using our Theorem and Theorem 2.4.16 of Schmidt [4], it is easy to prove that
if an infinite nonabelian BP-group G has modular lattice L(G), then G must be an
extended Tarski group.

2) The Theorem implies that for an infinite BP-group G the following are equiva-
lent: a) G is a Černikov group; b) G is locally finite; c) G is locally nilpotent; d)
G is locally soluble.

3) By parts 2) and 1) of the Lemma, it follows that if G is a nonabelian BP-
group, then there are only finitely many breaking points in L(G). Therefore, if the
subgroup lattice of a group has infinitely many breaking points, then the group
must be a Prüfer p-group.
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4) After a preliminary version of this note was written, the authors received a
reprint of Prof. R. Schmidt’s recent paper [5]. In Satz 3.1 of [5], it is shown that odd
order p-groups are BP-groups precisely when there exist a so-called supermodular
subgroup of G (which is a breaking point of L(G)). It is also shown there (for such
infinite nonabelian p-groups of odd order) that Z(G) is the largest breaking point
of L(G). A number of interesting questions remain still open:

a) Are there infinite BP-groups which are not locally finite and with non modular
lattice L(G)?

b) Are there infinite BP-groups of infinite exponent which are not locally fi-
nite? Such groups would necessarily have infinite proper abelian subgroups
of infinite index.

Prof A. Yu. Ol’shanskii, in a personal communication, kindly pointed out that the
construction of such groups would be possible, but not very simple. This hints that
a complete classification of BP-groups is far from being an easy task.
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