RINGS OF CHARACTERISTICS 2 MAY NOT BE BOOLEAN

A ring that consists only of idempotents is called Boolean. That is, a ring R is Boolean iff $a^{2}=a$ for every $a \in R$.

It is well-known that every Boolean ring has characteristics 2 and is commutative.
For any ring (possible without identity) R, the standard proof for $\operatorname{char}(R)=2$ is the following.
$a+a=(a+a)^{2}=a^{2}+a^{2}+a^{2}+a^{2}=a+a+a+a$ implies $a+a=0$.
However there is a shorter proof (less letters and symbols).
$a=a^{2}=(-a)^{2}=-a$ implies $a+a=0$.
The converse, "every ring of characteristics 2 is Boolean", fails, that is, not all rings of characteristic 2 are Boolean.

For example, the ring $\mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$ of square 2×2 matrices, with coefficients in \mathbb{Z}_{2}, is not Boolean.

Actually, out of 16 elements, $\mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$ contains precisely 8 idempotents, 6 units and 4 nilpotents (0_{2} and I_{2} are counted twice).

The polynomial ring $\mathbb{Z}_{2}[X]$ is another example (for instance X is not idempotent).

By $U(R)$ we denote the set of units (i.e., invertible elements) of R. Maybe less know is the following fact:
Exercise 1. If R is Boolean then $U(R)=\{1\}$.
that is, Boolean rings have only one unit.
Proof. Suppose $u \in U(R)$. Then, multiplying the expression $u^{2}=u$ by u^{-1}, we obtain $u=1$. Thus $U(R)$ contains the unique element 1 .

Related to this subject we mention [1], where a partial converse is proved
Theorem 2. A finite ring R in which $U(R)$ is as small as possible, i.e., $U(R)=$ $\{1\}$, is a Boolean ring.

References

[1] Rodney Coleman Some Properties of Finite Rings. https://arxiv.org/abs/1302.3192

