MATHEMATICA, Tome 23 (46), No 1, pp. 9-10

NOTE ON B-HIGH SUBGROUPS OF ABELIAN GROUPS

GRIGORE CĂLUGĂREANU

In [1], FUCHS proved the following simple result:

Lemma — Let $B \leq A$ and let C be B-high. Then $A^* = B \oplus C$ satisfies: (a) A/A^* is a torsion group; (b) (A/A^*) [p] $\cong (pA+C) \cap B/pB$ for every prime p.

In what follows we generalise this result and prove the converse. For this purpose we make an immediate application of the "snake" lemma, well-known result of homological algebra. All the groups are abelian.

Let B and C be subgroups of the group A. The canonic homomorphism $B \to A \to A/C$ is easily embedded in the exact sequence $0 \to B \cap C \to B \to A/C \to A/(B+C) \to 0$.

Let f be an endomorphism of A such that $f(B) \leq B$, $f(C) \leq C$ and $B \cap C = 0$. One can naturally extend the above exact seuqence to the following commutative diagram with exact rows:

$$0 \longrightarrow B \longrightarrow A/C \to A/(B \oplus C) \to 0$$

$$0 \to (f(A) + C) \cap B \to (f(A) + C)/C \to G \longrightarrow 0$$

where $G = (f(A) + C)/(f(A) + C) \cap (B \oplus C) \cong (f(A) + C) + (B \oplus C)/(B \oplus C)$ and the vertical homomorphisms are trivially induced by f. This last diagram is appropriate to the application of the "snake" lemma. Thus, we obtain the following exact sequence:

 $B \cap \operatorname{Ker}(f) \to f^{-1}(C)/C \xrightarrow{\alpha_f} f^{-1}(B \oplus C)/(B \oplus C) \xrightarrow{\delta_f} (f(A) + C) \cap B/f(B) \to 0$ Here $\alpha_f(a+C) = a + (B \oplus C)$ and $\delta_f(a+(B \oplus C)) = \pi_B(f(a)) + f(B)$ where $\pi_B \colon B \oplus C \to B$ is the canonic projection from the direct sum. Hence, we can state our generalisation as follows

PROPOSITION — Let B and C be disjoint subgroups of the group A. If f is an endomorphism of A such that $f(B) \leq B$ and $f(C) \leq C$ then an epimorphism $\delta_f \colon f^{-1}(B \oplus C)/(B \oplus C) \to (f(A) + C) \cap B/f(B)$ always exists. Moreover, δ_f is isomorphism iff $f^{-1}(C)/C \leq (B \oplus C)/C$.

The last assertion follows simply using the exactness of the "connecting" sequence. Indeed, δ_f is isomorphism iff Ker $\delta_f = \operatorname{im} \alpha_f = 0$, and one easily checks that $\operatorname{im} \alpha_f = 0$ is equivalent with the stated condition.

Remark. — If $f^{-1}(C)/C \leq S(A/C)$ and C is B-high then δ_f is isomorphism. Indeed, this follows immediately the following three conditions being equivalent:

- (i) C is B-high; (ii) $B \oplus C/C$ is essential in A/C;
- (iii) $A/B \oplus C$ is torsion and $S(A/C) \leq B \oplus C/C$.

A special case is now obtained by taking f to be the multiplication by a positive integer m. The epimorphism $\delta_m: (A/B \oplus C)[m] \to (mA + C) \cap B/mB$ is an isomorphism iff $(A/C)[m] \leq B \oplus C/C$. Hence, if m is square-free and C is B-high then δ_m is isomorphism.

Now we are able to prove the converse of Fuchs's lemma

PROPOSITION. — Let B, C be disjoint subgroups of A. If $A/B \oplus C$ is torsion and all the epimorphisms δ_p , for every prime p, are isomorphisms then C is B-high.

One has only to use $S(A/C) = \bigoplus_{p} (A/C)[p]$ and the condition (iii) mentioned above.

The "connecting" epimorphisms δ_p are also present in GRÄTZER lemma [2, pp. 49] which is in this way straightforward

Lemma. — Let C be B-high in A. $A = B \oplus C$ iff for every prime p, δ_p is trivial.

Hence, B is an absolute direct summand iff for every B-high subgroup C, all the δ_p are trivial.

REFERENCES

- [1] Fuchs, L., On a useful lemma for abelian groups, Acta Sci. Math., (Szeged), 17 (1953) 134-138.
- [2] Fuchs, L., Infinite Abelian Groups, vol. I, New York 1970.
 Received, 29. IX. 1980