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Abstract

The automorphism groups and the endomorphism rings of the direct

powers, sometimes give better information on torsion-free Abelian groups

than the automorphism groups respectively the endomorphism rings of

these groups.

1 Introduction

It is reasonable to consider that for any type of mathematical object, some
construction on a direct power sometimes provides more information than the
same construction on the object itself. In this paper, the constructions we
discuss are the automorphism group and endomorphism ring of some torsion-
free Abelian groups.

While Abelian p-groups are determined by their automorphism groups, tor-
sion-free Abelian groups are usually not distinguished by these (not even the
rank 1 groups).

A similar situation occurs for endomorphism rings of torsion-free Abelian
groups: while a celebrated result of Baer states that torsion Abelian groups are
determined by their endomorphism rings, for torsion-free Abelian groups this
fails (examples can be given even among rank 1 groups).

For an Abelian group G, one can easily check that ϕ : (End(G), +) −→

(Aut(G × G), ◦) defined by ϕ(f) =

[

1 0
f 1

]

, is a group embedding. This

embedding justifies the idea that torsion-free Abelian groups could be better
distinguished by the automorphism groups of their squares than by their usual
automorphism groups.

Moreover, this opens a new direction of research: determining torsion-free
Abelian groups by using the endomorphism rings of their squares.

In this paper, we study to what extent the automorphism group respectively
the endomorphism ring of a square (or some larger powers) determine (or not)
some special classes of torsion-free Abelian groups. Our main results (referred
as square or n-auto-uniqueness respectively square endo-uniqueness) are
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Theorem 5. Aut(G2) ∼= Aut(H2) implies G ∼= H for any 2-divisible rational

groups of idempotent type G, H .

Proposition 8. For any positive integer n ≥ 3, Aut(Gn) ∼= Aut(Hn) implies

G ∼= H for Abelian groups having principal ideal domain endomorphism rings.

and,
Proposition 9. For any positive integer n ≥ 4, Aut(Gn) ∼= Aut(Hn) implies

G ∼= H for Abelian groups having commutative endomorphism rings.

In the last Section we prove some square endo-uniqueness results.

2 Terminology and Preliminary results

For an Abelian group G, End(G) denotes its endomorphism ring and Aut(G)
its automorphism group, and, for a ring with identity R, we denote by R+

the additive group of this ring, by U(R) the group of all units in R and by
GLn(R) = U(Mn(R)) the linear group of invertible matrices having entries in
R (here Mn(R) denotes the full n × n matrix ring).

For a set of primes P , we denote by Z[P−1] the subring with identity of Q

generated by {p−1|p ∈ P}. Since this will play a role somewhere below, notice
that Z[P−1] is generated, qua ring, by its units. Note that for any rational
group R, End(R) ∼= Z[P−1

R ] where PR = {p ∈ P|pR = R}.
Hence End(R2) ∼= M2(End(R)) = M2(Z[P−1

R ]) respectively Aut(R2) ∼=
GL2(End(R)) = GL2(Z[P−1

R ]).

If t(R) is the type of a rational group R, notice that PR1
6= PR2

=⇒
: t(R1) 6=

t(R2) ⇔ R1 � R2. However, the nonreversible implication holds if we consider
only idempotent types.

For a torsion-free Abelian group G the symbols G(t), G∗(t) and G](t) =
〈G∗(t)〉

∗
denote the usual type subgroups and G0(t) = G(t)/G](t). A type t is

critical for G if G0(t) 6= 0. A group G is called slim (see [7]) if rkG0(t) = 1 for
each critical type t, block-rigid if its partially ordered set of critical types is an
antichain, and rigid if it is both slim and block-rigid. We will use the following

Proposition 1 ([7]) Let G be a finite rank (almost) completely decomposable
group. Then End(G) is commutative if and only if Aut(G) is commutative and
if and only if G is rigid.

Notice that the square of a rational group is block-rigid, but not slim:
rk(R2)0(t) = 2 for t the type of R. Hence neither End(R2) nor Aut(R2) are
commutative.

The following statements are readily checked:
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Lemma 2 For arbitrary rings S and T , any group isomorphism f : GLn(S) →
GLn(T ) induces a group isomorphism f ∗ : U(S) ∩ Z(S) → U(T ) ∩ Z(T ) (here
Z(S) denotes the center of S).

Special Case: For Abelian groups G and H , every group isomorphism

ϕ : Aut(G2) → Aut(H2) induces an isomorphism ϕ∗ : Aut(G)∩Z(End(G)) −→
Aut(H) ∩ Z(End(H)).

Special Case: For Abelian groups having commutative endomorphism

rings, Aut(G2) ∼= Aut(H2) implies Aut(G) ∼= Aut(H).

Lemma 3 For arbitrary rings S and T , any ring isomorphism g : Mn(S) →
Mn(T ) induces a ring isomorphism g∗ : Z(S) → Z(T ).

Special Case: For Abelian groups G and H , every ring isomorphism ϕ :
End(G2) → End(H2) induces an isomorphism ϕ∗ : Z(End(G)) −→ Z(End(H)).

Special Case: For Abelian groups having commutative endomorphism
rings, End(G2) ∼= End(H2) implies End(G) ∼= End(H).

In a negative direction, we just point out that there are examples (e.g., see
[8]) of nonisomorphic (indecomposable torsion-free) Abelian groups A and B,
such that A2 and B2 are isomorphic.

This shows that our expectation, that squares sometimes bear more infor-
mation than the groups, has some limits.

Summarizing, we deal with special cases of the following more general prob-
lems:

(i) for two rings S and T , when does GL2(S) ∼= GL2(T ) imply S+ ∼= T+?
(ii) for two rings S and T , when does M2(S) ∼= M2(T ) imply S+ ∼= T+?

There is a great deal of literature (maybe more than 100 years long) covering
such problems.

As for (i) we refer to Hahn-O’Meara [4] where most of important results
are presented. While for n ≥ 3 there is already a fairly satisfactory theory,
unfortunately the case n = 2 is kind of pathological (only one page in [4]) and
only some special results are proved elsewhere.

In our research we use two papers devoted precisely to GL2: P.M. Cohn [1]
(1966) and M. Dull [2] (1974).

As for (ii) we refer to the excellent updated survey [6] written by T.Y. Lam
(1994). For unexplained terminology on Abelian groups the reader is referred
to Fuchs [3] and Krylov et alt. [5].
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3 Auto-uniqueness

For any rational group R notice that Aut(R) ∼= 〈±1〉×Fm (here Fm denotes
the free Abelian group of rank m) with cardinal m = |PR|. Hence

Lemma 4 For any two rational groups R1, R2, Aut(R1) ∼= Aut(R2) if and only
if the cardinals |PR1

| = |PR2
|. �

In what follows, we prove a square auto-uniqueness theorem for mostly all
the rational groups.

Theorem 5 Aut(G2) ∼= Aut(H2) implies G ∼= H for any 2-divisible rational
groups of idempotent type G, H.

Before giving the Proof, some preparatives are necessary.

First notice that if R is locally free (i.e., PR = ∅) then Aut(R2) ∼= GL2(Z),
which shows that automorphism groups of squares do not distinguish locally

free rational groups. Therefore, in the sequel, we consider only rational groups
with PR 6= ∅ (more precisely PR = {2}).

Secondly, since the proof uses a result of M. Dull (see [2]), we first explain
Dull terminology (see also [4] or [1]).

An integral domain S (not necessary commutative) is generalized Euclidean

(or a GE2-ring ) if GL2(S) = GE2(S), that is, invertible matrices are generated
by elementary transvections and diagonal (both these are also called elementary)
matrices. For two rings S, T a U-homomorphism f : S → T is a homomorphism
x 7→ x′ of S+ into T+ such that 1′ = 1 and (αaβ)′ = α′a′β′ for all a ∈ S and
α, β units in S (i.e., a generalization of ring homomorphism, which is given in
Cohn [1]; a more technical definition for this concept is given by Dull [2], but
in the cases we are dealing with, these two definitions are equivalent). U-anti-

homomorphisms are defined analogously.
The following is elementary: let S be a ring which, qua ring, is generated

by its units. Then any U-homomorphism of S into an arbitrary ring is a ring

homomorphism.

For a commutative integral domain SL2 = E2 if the special linear group is
generated only by elementary trasvections.

While Dull’s result is formulated for the automorphism situation only, the
method of proof applies to the isomorphism problem as well. So we reformulate
his result as follows

Let S, T be commutative integral domains of zero characteristic having 2 as

unit and such that SL2 = E2. Then any isomorphism Λ : GL2(S) → GL2(T )
is of the form Pχ ◦ Φg ◦ Γ where, Γ is induced by a U-isomorphism S → T .
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We are now ready for the

Proof. Since subrings with 1 of Q are, as rings, generated by their units,
U-isomorphisms are, in this special case, ring isomorphisms. Moreover, since
subrings with 1 of Q are Euclidean, these are also generalized Euclidean and so
GL2 = GE2 and SL2 = E2 hold.

For a rational group of idempotent type R, assume the first entry in the type
t(R) is nonzero and thus infinity. In this case 2 is a unit in the endomorphism
ring (a common hypothesis for automorphism groups of Abelian groups).

Then, for two rational groups R1 and R2 with Aut(R2
1)

∼= Aut(R2
2), we de-

duce GL2(Z[P−1
R1

]) ∼= GL2(Z[P−1
R2

]), and so, by Dull’s result, Z[P−1
R1

] ∼= Z[P−1
R2

].
Hence PR1

= PR2
(indeed, if P1 6= P2 are nonempty sets of primes, then the un-

derlying additive subgroups of Z[P−1
1 ] and Z[P−1

2 ] are not isomorphic, as groups,
and therefore, nor as rings) and finally R1

∼= R2, since we have considered only
rational groups of idempotent type.

Comparing this result with Lemma 4, shows that automorphism groups of
squares, better distinguish rational groups (which are not locally free) than the
simple ones.

Example. Let Q(2,3) and Q(2,5) be rational groups of type (∞,∞, 0, 0, ...)
and (∞, 0,∞, 0, 0, ...), respectively. Then Aut( Q(2,3)) ∼= Aut(Q(2,5)) but
Aut

(

(Q(2,3))2
)

� Aut
(

(Q(2,5))2
)

, i.e., non-isomorphic rational groups, distin-
guished by the automorphism groups of their squares but not by their automor-
phism groups.

Remark 6 Since rings in Cohn and Dull’s results should be domains, a sim-
ilar result (square auto-uniqueness) for the class of the finite rank completely
decomposable rigid groups, with 2-divisible summands, cannot be proved in this
way (i.e., by extending the previous Theorem)

Recall that the pseudo-socle of a torsion-free group is the pure subgroup
generated by all minimal pure fully invariant subgroups. A torsion-free group
is strongly indecomposable if it does not have nontrivial quasi-decompositions,
and irreducible if it has no proper minimal pure fully invariant subgroups.

Proposition 7 Aut(G2) ∼= Aut(H2) implies G ∼= H for any strongly indecom-
posable (torsion-free Abelian of finite rank) groups G,H which have pseudo-socle

equal to the group (in particular, irreducible strongly indecomposables).

Proof. Torsion-free Abelian groups of finite rank having (not necessarily com-
mutative) domains as endomorphism rings are (see [5]) the strongly indecom-
posable groups G which have pseudo-socle Psoc(G) = G. We just have to use
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the following Cohn’s result, which essentially needs the domain restriction and
also some others (but not commutativity):

Theorem 12.2 - Let S be k-ring and T a k′-ring, both with degree-function,

where k and k′ are any fields of characteristic 6= 2 and S is either a GE2-ring or

all projective S-modules on two generators are free. Then every isomorphism

between GL2(S) and GL2(T ) is obtained by taking the isomorphism induced

by a U-isomorphism or U-anti-isomorphism, followed by a central homomothety

and an inner automorphism.

Explaining terminology here would take another half-page (as we already
did it for Dull’s result), so we skip the details.

Since there is an essential difference between results concerning the isomor-
phism problem for linear groups for n = 2 respectively n ≥ 3, in the problem we
discuss, it is easier to obtain better results for cubes and larger direct powers of
Abelian groups.

Proposition 8 For any positive integer n ≥ 3, Aut(Gn) ∼= Aut(Hn) implies
G ∼= H for Abelian groups having principal ideal domain endomorphism rings.

Proof. Use 3.3.8 from [4].

Characterizations of Abelian groups having principal ideal domain endomor-
phism rings do exist (for torsion-free Abelian groups see [5]). In particular, these
are self-small groups.

Proposition 9 For any positive integer n ≥ 4, Aut(Gn) ∼= Aut(Hn) implies
G ∼= H for Abelian groups having commutative endomorphism rings.

Proof. Use 3.3.11 from [4].

4 Square endo-uniqueness

Proposition 10 End(G2) ∼= End(H2) implies G ∼= H for any rational groups
of idempotent type G, H.

Proof. For commutative rings S and T , Mn(S) ∼= Mn(T ) implies (since the
centers are also isomorphic) S ∼= T . Since endomorphism rings of rational
groups are commutative, as already noticed in Section two, End(G2) ∼= End(H2)
implies End(G) ∼= End(H). Finally we have to restrict to rational groups of
idempotent type in order to recover G ∼= H .

Proposition 11 End(G2) ∼= End(H2) implies G ∼= H for finite rank completely
decomposable rigid groups G,H.
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Proof. Since finite rank completely decomposable rigid groups have commuta-
tive endomorphism rings (see Proposition 1), using Proposition 10, what remains

is the use of the well-known ring isomorphism End(
n
⊕

i=1

Ki) ∼=
n
∏

i=1

End(Ki) for

fully invariant direct summands (and in particular for rigid completely decom-
posable groups).
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