A 2×3 association analogue

Grigore Călugăreanu

Proposition 1 Let $a, b, c, d \in R$, a GCD (commutative) domain, such that ad = bc. If $\delta = \gcd(a, b)$ and $\lambda = \gcd(c, d)$ and $a = \delta a_1$, $b = \delta b_1$, $c = \lambda c_1$, $d = \lambda d_1$ then a_1 , c_1 and b_1 , d_1 are associated in divisibility, respectively. Moreover, if $c_1 = a_1 u$ with $u \in U(R)$ then $d_1 = b_1 u$, for the same unit u.

Proof. By cancellation with $\delta\lambda$ we have $a_1d_1 = b_1c_1$. Since a_1, b_1 are coprime we get $a_1 \mid c_1$. Since c_1, d_1 are coprime, we also obtain $c_1 \mid a_1$, as desired. Analgous for b_1, d_1 .

Assume $c_1 = a_1 u$ (and so $a_1 = c_1 u^{-1}$), and $b_1 = d_1 v$ (and so $d_1 = b_1 v^{-1}$). Since $a_1 d_1 = b_1 c_1$, we get $a_1 d_1 = a_1 d_1 uv$ so $v = u^{-1}$ follows from uv = 1. Hence $d_1 = b_1 v^{-1} = b_1 u$.

Remark. The hypothesis corresponds to det $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = 0$, that is, dependent rows: $d\begin{bmatrix} a & b \end{bmatrix} = b\begin{bmatrix} c & d \end{bmatrix}$. Dividing by their gcd we get a_1, c_1 and b_1, d_1 are associated in divisibility, respectively. Moreover, $\begin{bmatrix} a_1 & b_1 \end{bmatrix} u = \begin{bmatrix} c_1 & d_1 \end{bmatrix}$.

THE QUESTION: Is the 2×3 analogue true or false ? Yes, TRUE. That is

Conjecture 2 If $\operatorname{rk}\begin{bmatrix} a & b & c \\ a' & b' & c' \end{bmatrix} = 1$ (i.e., ab' = a'b, ac' = a'c, bc' = b'c), $\delta = \operatorname{gcd}(a, b, c)$, $\lambda = \operatorname{gcd}(a', b', c')$ and $a = \delta a_1$, $b = \delta b_1$, $c = \delta c_1$, $a' = \lambda a'_1$, $b' = \lambda b'_1$ and $c' = \lambda c'_1$, then then a_1, b_1, c_1 and a'_1, b'_1, c'_1 are respectively associated (in divisibility). Moreover, $\begin{bmatrix} a'_1 & b'_1 & c'_1 \end{bmatrix} = \begin{bmatrix} a_1 & b_1 & c_1 \end{bmatrix} u$ for some $u \in U(R)$.

The proof of the second claim is easy: now ab' = a'b becomes $\delta a_1 \lambda b'_1 = \lambda a'_1 \delta b_1$ and so $a_1b'_1 = a'_1b_1$. Then, by association, if $a'_1 = a_1u$, $b'_1 = b_1v$, we get $a_1b_1v = a_1ub_1$ whence u = v. If also $c'_1 = wc_1$ we obtain u = v = w.

Proof for the first claim. We just use the following

Lemma 3 Let $a, b, c, a', b', c' \in R$, a GCD (commutative) domain. If ab' = a'b, ac' = a'c, bc' = b'c and the rows $\begin{bmatrix} a & b & c \end{bmatrix}$ and $\begin{bmatrix} a' & b' & c' \end{bmatrix}$ are unimodular then the pairs a, a', b, b' and c, c' are associated. Moreover, there exists a unit $u \in U(R)$ such that $\begin{bmatrix} a' & b' & c' \end{bmatrix} = \begin{bmatrix} a & b & c \end{bmatrix} u$.

Proof. Denote $\delta = \gcd(a, b)$ with $a = \delta a_1$, $b = \delta b_1$ and $\delta' = \gcd(a', b')$ and $a' = \delta' a'_1, b' = \delta' b'_1$. From ab' = a'b cancelling $\delta\delta'$ we obtain $a_1b'_1 = a'_1b_1$. Since a_1, b_1 are coprime, it follows $a_1 \mid a_1'$. Symetrically, since a_1', b_1' are coprime, it follows $a'_1 \mid a_1$, so that a_1, a'_1 are associates. Hence there is a unit $u \in U(R)$ such that $a_1 = a'_1 u$.

Further, notice that $gcd(\delta, c) = gcd(gcd(a, b), c) = 1$ and so δ, c are coprime. Now we use ac' = a'c, that is, $\delta(a'_1u)c' = \delta a_1c' = \delta'a'_1c$. Cancelling a'_1 we get $\delta uc' = \delta'c$ and since δ, c are coprime, $\delta \mid \delta'$. Symmetrically, $\delta' \mid \delta$ and so δ, δ' are also associates. Therefore $a = \delta a_1$ and $a' = \delta' a'_1$ are associates. In a similar way, it follows that b, b' and c, c' are associates, respectively.

Finally, suppose a' = ua, b' = vb and c' = wc for some $u, v, w \in U(R)$. From ab' = a'b we get avb = uab, so v = u. Analogously, w = v and so w = v = u, as claimed. \blacksquare