A 2×3 association analogue

Grigore Călugăreanu

Proposition 1 Let $a, b, c, d \in R$, a GCD (commutative) domain, such that $a d=b c$. If $\delta=\operatorname{gcd}(a, b)$ and $\lambda=\operatorname{gcd}(c, d)$ and $a=\delta a_{1}, b=\delta b_{1}, c=\lambda c_{1}, d=$ λd_{1} then a_{1}, c_{1} and b_{1}, d_{1} are associated in divisibility, respectively. Moreover, if $c_{1}=a_{1} u$ with $u \in U(R)$ then $d_{1}=b_{1} u$, for the same unit u.

Proof. By cancellation with $\delta \lambda$ we have $a_{1} d_{1}=b_{1} c_{1}$. Since a_{1}, b_{1} are coprime we get $a_{1} \mid c_{1}$. Since c_{1}, d_{1} are coprime, we also obtain $c_{1} \mid a_{1}$, as desired. Analgous for b_{1}, d_{1}.

Assume $c_{1}=a_{1} u$ (and so $a_{1}=c_{1} u^{-1}$), and $b_{1}=d_{1} v$ (and so $d_{1}=b_{1} v^{-1}$). Since $a_{1} d_{1}=b_{1} c_{1}$, we get $a_{1} d_{1}=a_{1} d_{1} u v$ so $v=u^{-1}$ follows from $u v=1$. Hence $d_{1}=b_{1} v^{-1}=b_{1} u$.

Remark. The hypothesis corresponds to $\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=0$, that is, dependent rows: $d\left[\begin{array}{ll}a & b\end{array}\right]=b\left[\begin{array}{ll}c & d\end{array}\right]$. Dividing by their gcd we get a_{1}, c_{1} and b_{1}, d_{1} are associated in divisibility, respectively. Moreover, $\left[\begin{array}{ll}a_{1} & b_{1}\end{array}\right] u=\left[\begin{array}{ll}c_{1} & d_{1}\end{array}\right]$.

THE QUESTION: Is the 2×3 analogue true or false? Yes, TRUE.
That is
Conjecture 2 If rk $\left[\begin{array}{ccc}a & b & c \\ a^{\prime} & b^{\prime} & c^{\prime}\end{array}\right]=1$ (i.e., $a b^{\prime}=a^{\prime} b, a c^{\prime}=a^{\prime} c, b c^{\prime}=b^{\prime} c$), $\delta=\operatorname{gcd}(a, b, c), \lambda=\operatorname{gcd}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ and $a=\delta a_{1}, b=\delta b_{1}, c=\delta c_{1}, a^{\prime}=\lambda a_{1}^{\prime}, b^{\prime}=$ λb_{1}^{\prime} and $c^{\prime}=\lambda c_{1}^{\prime}$, then then a_{1}, b_{1}, c_{1} and $a_{1}^{\prime}, b_{1}^{\prime}, c_{1}^{\prime}$ are respectively associated (in divisibility). Moreover, $\left[\begin{array}{lll}a_{1}^{\prime} & b_{1}^{\prime} & c_{1}^{\prime}\end{array}\right]=\left[\begin{array}{lll}a_{1} & b_{1} & c_{1}\end{array}\right]$ u for some $u \in U(R)$.

The proof of the second claim is easy: now $a b^{\prime}=a^{\prime} b$ becomes $\delta a_{1} \lambda b_{1}^{\prime}=$ $\lambda a_{1}^{\prime} \delta b_{1}$ and so $a_{1} b_{1}^{\prime}=a_{1}^{\prime} b_{1}$. Then, by association, if $a_{1}^{\prime}=a_{1} u, b_{1}^{\prime}=b_{1} v$, we get $a_{1} b_{1} v=a_{1} u b_{1}$ whence $u=v$. If also $c_{1}^{\prime}=w c_{1}$ we obtain $u=v=w$.

Proof for the first claim. We just use the following
Lemma 3 Let $a, b, c, a^{\prime}, b^{\prime}, c^{\prime} \in R$, a $G C D$ (commutative) domain. If $a b^{\prime}=a^{\prime} b$, $a c^{\prime}=a^{\prime} c, b c^{\prime}=b^{\prime} c$ and the rows $\left[\begin{array}{lll}a & b & c\end{array}\right]$ and $\left[\begin{array}{lll}a^{\prime} & b^{\prime} & c^{\prime}\end{array}\right]$ are unimodular then the pairs $a, a^{\prime}, b, b^{\prime}$ and c, c^{\prime} are associated. Moreover, there exists a unit $u \in U(R)$ such that $\left[\begin{array}{lll}a^{\prime} & b^{\prime} & c^{\prime}\end{array}\right]=\left[\begin{array}{lll}a & b & c\end{array}\right] u$.

Proof. Denote $\delta=\operatorname{gcd}(a, b)$ with $a=\delta a_{1}, b=\delta b_{1}$ and $\delta^{\prime}=\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)$ and $a^{\prime}=\delta^{\prime} a_{1}^{\prime}, b^{\prime}=\delta^{\prime} b_{1}^{\prime}$. From $a b^{\prime}=a^{\prime} b$ cancelling $\delta \delta^{\prime}$ we obtain $a_{1} b_{1}^{\prime}=a_{1}^{\prime} b_{1}$. Since a_{1}, b_{1} are coprime, it follows $a_{1} \mid a_{1}^{\prime}$. Symetrically, since $a_{1}^{\prime}, b_{1}^{\prime}$ are coprime, it follows $a_{1}^{\prime} \mid a_{1}$, so that a_{1}, a_{1}^{\prime} are associates. Hence there is a unit $u \in U(R)$ such that $a_{1}=a_{1}^{\prime} u$.

Further, notice that $\operatorname{gcd}(\delta, c)=\operatorname{gcd}(\operatorname{gcd}(a, b), c)=1$ and so δ, c are coprime. Now we use $a c^{\prime}=a^{\prime} c$, that is, $\delta\left(a_{1}^{\prime} u\right) c^{\prime}=\delta a_{1} c^{\prime}=\delta^{\prime} a_{1}^{\prime} c$. Cancelling a_{1}^{\prime} we get $\delta u c^{\prime}=\delta^{\prime} c$ and since δ, c are coprime, $\delta \mid \delta^{\prime}$. Symmetrically, $\delta^{\prime} \mid \delta$ and so δ, δ^{\prime} are also associates. Therefore $a=\delta a_{1}$ and $a^{\prime}=\delta^{\prime} a_{1}^{\prime}$ are associates.

In a similar way, it follows that b, b^{\prime} and c, c^{\prime} are associates, respectivelly.
Finally, suppose $a^{\prime}=u a, b^{\prime}=v b$ and $c^{\prime}=w c$ for some $u, v, w \in U(R)$. From $a b^{\prime}=a^{\prime} b$ we get $a v b=u a b$, so $v=u$. Analogously, $w=v$ and so $w=v=u$, as claimed.

