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On Unit Fine Rings

Grigore Călugăreanu

Abstract. A nonzero element a in a unital ring R is called unit fine if
there is a unit u in R such that ua is fine (i.e. a sum of a unit and a
nilpotent). A ring all whose elements are unit fine is called accordingly.
This turns out to be a new class of simple rings, including the class of
fine rings (and so the class of simple Artinian rings). The paper studies
unit fine elements and rings. For rings such that 1 is a sum of two units,
it is proved that matrix rings over unit fine rings, are unit fine.
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1. Introduction

In his seminal 1977 paper [7], Nicholson defined clean elements in a unital
ring R, as sums e + u with idempotent e and unit u . A ring was called clean
if all its elements are clean. Clean rings turned out to be exchange (suitable).

In his 2006 Ph. D. thesis (see also [5]), Diesl defined nil-clean elements
in a ring R, as sums e + t with idempotent e and nilpotent t. A ring was
called nil-clean if all its elements are nil-clean. Nil-clean rings turned out to
be clean.

Finally, in their 2014 paper [3], Călugăreanu and Lam defined fine el-
ements in a unital ring R, as nonzero sums u + t with unit u and nilpotent
t. Fine rings, i.e., rings in which all nonzero elements are fine, (properly)
include simple Artinian rings and are (properly) included in the class of all
the simple rings.

In the above definitions, if the (two) components of the sums commute,
the corresponding elements (or rings) are called strongly clean (or nil-clean or
fine). If a clean (or nil-clean or fine) element has only one such decomposition,
it is called uniquely clean (or nil-clean or fine). Rings with only such type of
elements are called accordingly.

In [9] (2005) and [2] (2013), an element a in a ring R was called unit
clean if there exists a unit u ∈ R, such that ua is clean. A ring is unit clean
if so are all its elements and clearly, such rings generalize the clean rings.
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Analogously, in [1] (2019), an element a in a ring R is called unit nil-
clean if there exists a unit u ∈ R, such that ua is nil-clean. A ring is unit
nil-clean if so are all its elements. Obviously, nil-clean rings are unit nil-clean.

It is natural to consider the third possible combination. Therefore, we
give the following

Definition. A nonzero element a ∈ R is said to be unit fine if there exists a
unit u ∈ R, such that ua is fine. A ring is unit fine if all its nonzero elements
have that property. We could actually call such elements, left unit fine, owing
to the position of the unit u. However, this definition turns out to be left-
right symmetric (see Corollary 7). Clearly, fine rings are unit fine. Denote by
u−Φ(R) the set of unit fine elements of the ring R.

In this paper, we study unit fine elements and rings. It is easy to check
the following inclusions for classes of rings

{simple Artinian} ⊆ {fine} ⊆ {unit fine} ⊆ {simple},

the first and third inclusions being (known to be) irreversible.

Despite the fact that both classes of rings are ”between” simple Artinian
and simple, it turns out that unit fine elements (and rings) somehow have
nicer properties than fine elements (and rings). See for example Corollary 8
and the results in Sect. 3.

Properties of unit fine elements and rings are given in Sect. 2. Unit
fine rings are simple and 3-good, but the 2-good property remains an open
question. Section 3 presents nice characterizations of special types of 2×2 unit
fine matrices, one over any (unital) ring and two others over commutative
domains. In Sect. 4 we prove that matrix extensions of unit fine rings are
unit fine, in two cases: when the base ring is an elementary divisor ring, and,
when the base ring S is unit fine with 1 ∈ U(S) + U(S).

The last section provides an example of unit fine ring which could settle
the open question, whether the middle inclusion is (also) irreversible.

Whenever it is more convenient, we will use the widely accepted short-
hand “iff” for “if and only if” in the text. We denote by U(R), N(R), J(R)
the set of all units, the set of all nilpotents and the Jacobson radical of R,
respectively.

2. Unit Fine Rings

Suppose a ∈ R is a unit fine element. There are units u,w ∈ U(R) and
nilpotent t ∈ N(R) such that ua = w + t.

Since ua = w + t implies a = u−1w +u−1t, obviously, unit fine elements
are fine whenever units commute with nilpotents.

This occurs for instance for uni rings (see [4]: a ring is called uni if
its units commute with its nilpotents; examples include unit central rings,
nilpotent central rings, rings with commuting units and trivially, reduced
rings) or for rings in which N(R) is a left (or right) ideal.

As in the case of fine rings we easily show that strongly or uniquely unit
fine rings are (only the) division rings.
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To be more precise, note that a ring R is uniquely unit fine if R is unit
fine, and for any nonzero a ∈ R, if u is a unit, such that ua is fine, then ua
is uniquely fine.

Proposition 1. For any nonzero ring R, the following statements hold.

(1) An element a ∈ R\(0) is strongly unit fine iff a ∈ U(R).
(2) R is strongly unit fine iff R is a division ring.
(3) R is unit fine and uni (in particular, reduced) iff it is a division ring.
(4) R is uniquely unit fine iff R is a division ring.

Proof. (1) Units in a nonzero ring are always strongly (unit) fine. Conversely,
if a ∈ R\(0) has a strongly unit fine decomposition ua = w + t, then ua =
w(1 + w−1t) ∈ U(R) (since wt = tw implies that w−1t ∈ N(R) and so
1 + w−1t is unipotent). This proves (1), which clearly implies (2).

(3) It suffices to prove the “only if” part, so assume that R is unit fine
and uni. Clearly, R is then strongly (unit) fine, so it is a division ring by (2).

(4) Again, it suffices to prove the “only if” part, so assume R is uniquely
unit fine. If we can show that R is a reduced ring, it will be a division ring.
For any t ∈ N(R), we have 1 + t �= 0 (since R �= 0). From the two (unit) fine
decompositions 1 + t = (1 + t) + 0, we conclude that t = 0. �

In [3] it is proved that fine rings are simple, and examples show that
simple rings need not be fine.

Indeed, if we take any simple domain R that is not a division ring (e.g.
[6], (3.17), or [6], (3.19)), then R cannot be fine since N(R) = 0. According
to (3), above proposition, these examples also show that simple rings need
not be unit fine.

Next

Theorem 2. (1) If a ∈ u−Φ(R), then RaR = R.
(2) Any unit fine ring R is a simple ring.
(3) For any unital ring homomorphism f : R → S with S �= 0, f(u−Φ(R)) ⊆

u−Φ(S).
(4) Let I be a nil ideal of R, and let a ∈ R. Then a ∈ u−Φ(R) iff a ∈

u−Φ(R/I).

Proof. (1) Let ua = w + t be a unit fine decomposition. In the factor ring
R = R/RaR, the unit u = −t is nilpotent. This implies that R = {0};
that is, RaR = R.

(2) follows from (1).
(3) Let a ∈ u−Φ(R). Then RaR = R by (1). Since f(R) �= 0, we have

f(a) �= 0. After knowing this, it is clear that f(a) ∈ u−Φ(S).
(4) The “only if” part follows easily from (3). Conversely, if a ∈ u−Φ(R/I),

take a unit fine decomposition ua = w + t in R/I. Since I ⊆ J(R),
we have u,w ∈ U(R). Moreover, ua − w = t ∈ N(R/I) implies that
ua − w ∈ N(R) (since I is a nil ideal). Thus, ua ∈ w + N(R). Clearly,
a �= 0, so we have a ∈ u−Φ(R).

�
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Therefore, for classes of rings

{simpleArtinian} ⊆ {fine} ⊆ {unitfine} ⊆ {simple},

the first and third inclusions being (known to be) irreversible. We come back
to the middle inclusion in the last section.

Referring to commutative unit fine rings, recall that a ring R is called
2-primal if N(R) is contained in the prime radical of R (see [6], p. 195).

The following result gives some other examples of rings whose unit fine
elements are just units.

Proposition 3. If R �= 0 and N(R) ⊆ J(R), then u−Φ(R) = U(R). (In
particular, this equality holds for all local rings and all non-zero 2-primal
rings, including all nonzero commutative rings.)

Proof. By hypothesis, if a ∈ R has a unit fine decomposition ua = w + t,
then t ∈ N(R) implies t ∈ J(R). Therefore, ua ∈ w + J(R) ⊆ U(R) and so
a ∈ U(R). �

Corollary 4. If R �= 0, N(R) ⊆ J(R) and R is unit fine then R is a division
ring. In particular, the commutative unit fine rings are fields.

In a ring R, an element a ∈ R is equivalent to b ∈ R if there are units
p, q ∈ U(R) such that b = paq.

Theorem 5. Let R be a ring. The following conditions are (logically) equiva-
lent:
(1) R is unit fine.
(2) Every nonzero element in R is equivalent to a fine element.

Proof. (1) ⇒ (2) Obvious (since a = u−1(ua) · 1, every element a ∈ R is
equivalent to ua, which is fine by hypothesis).

(2) ⇒ (1) Let 0 �= a ∈ R and assume there exist p, q ∈ U(R), such that
paq = w + t, where w ∈ U(R) and t ∈ N(R). Therefore, we have
qpa = qwq−1 + qtq−1. Clearly, qwq−1 is a unit and qtq−1 is nilpotent.
In addition, qp ∈ U(R). This implies that a is unit fine. Therefore, R is
unit fine.

�

Corollary 6. The unit fine property is invariant to conjugation.

Proof. Since conjugate elements are equivalent, the claim follows by transi-
tivity of equivalence. �

The following result shows that the unit fineness is a left–right symmet-
ric property.

Corollary 7. Let R be a ring. The following conditions are equivalent:
(1) R is unit fine.
(2) The opposite ring Rop is unit fine.
(3) For any nonzero a ∈ R, there exists u ∈ U(R), such that au is fine.
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Proof. (1) ⇒ (2) Let 0 �= aop ∈ Rop. In view of Theorem 5, there exist p, q ∈
U(R), such that paq = w + t, where w ∈ U(R) and t ∈ N(R). Hence,
qopaoppop = wop + top is fine in Rop. This yields (2), using Theorem 5
again.

(2) ⇒ (3) This is obvious.
(3) ⇒ (1) This follows from Theorem 5 (since a = 1 · (au)u−1, an arbitrary

a ∈ R is equivalent to au).
�

Now a property which fails for fine elements.

Corollary 8. If a is unit fine in R, so are va, av for any v ∈ U(R).

Proof. Assume ua = w+ t for u,w ∈ U(R) and t ∈ N(R). Then w+ t = ua =
uv−1(va) so va is unit fine. As for av, we use the previous theorem. �

We end this section with a discussion of the 2-good property for unit
fine rings.

Recall that, for some positive integer n, an element in a ring R is n
-good if it is the sum of n units of R.

An example of unit fine element which is not 2-good in M2(Z[X]), is
given below.

First recall from [8] that a proper matrix ring over an elementary divisor
ring is 2-good. Hence every 2 × 2 integral matrix is 2-good and in order to
find unit fine elements that are not 2-good, M2(Z) is not suitable.

Next recall the following

Proposition 9. [8] Let R be a ring, n ≥ 2 an integer and let L = Ra1 +
...Ran be a left ideal generated by the elements a1, . . . , an ∈ R. Let A be the
n × n matrix whose entries are all zero except for the first column which is
[a1, . . . , an]T . Suppose that

(1) L cannot be generated by fewer than n elements, and
(2) zero is the only 2-good element in L.

Then A is not 2-good.

It is noticed in [8] that if R is any of the rings Z[X] or F [x, y], where F
is a field, then both conditions are satisfied by any proper ideal of R, so (A
and) Mn(R) is not 2-good for all n ≥ 2.

Example. For R = Z[X] consider A =
[

1 0
2X 0

]
∈ M2(Z[X]). For n = 2 and

L = (1, 2X), the conditions in Vamos above proposition are fulfilled, so A is
not 2-good (one can also easily show this directly). It is also easy to check
that A is not fine. However, it is unit fine, as the following equality shows:[

1 1
0 1

] [
1 0

2X 0

]
=

[
1 −1
1 −1

]
+

[
2X 1

2X − 1 1

]
.

Of course, the polynomial 2X can be replaced by X2 or many other
polynomials.
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However, giving an example of unit fine element that is not 2-good
implies that unit fine rings are not 2-good, only if the example is in a unit
fine ring. However M2(Z[X]) is not unit fine since it is not simple (has plenty
of proper ideals together with Z[X]).

Therefore, the following question remains open: Are unit fine rings, 2-
good ?

The following result is easy

Proposition 10. Unit fine rings are 3-good.

Proof. If ua = w + t with u,w ∈ U(R), t ∈ N(R) then a = u−1w + u−1(1 +
t) − u−1. �

3. Unit Fine 2 × 2 Matrices

The goal of this section is to show that there are far more unit fine 2 × 2
matrices than fine matrices, and special classes of these have nicer charac-
terizations, compared to the fine ones. In a way, the class of unit fine rings
seems richer in nice properties compared to the class of fine rings.

Notice that a nilpotent 2 × 2 matrix over a commutative domain is of

form
[

α β
γ −α

]
with α2 + βγ = 0. Indeed, let Q be the field of fractions of

R. Then in M2(Q), B is similar to qE12 for some q ∈ Q. So tr(B) = 0 and
det(B) = 0.

Recall that two ideals A,B in a commutative ring R are comaximal if
A+B = R, or equivalently, 1 ∈ A+B. Notice that Ra and Rb are comaximal
(principal) ideals of a commutative ring R iff any common divisor d ∈ R of
a and b is a unit (i.e. is associated in divisibility with 1).

Theorem 11. Let R be any commutative domain. A diagonal matrix A =[
a 0
0 b

]
(a �= 0 �= b) is unit fine in M2(R) iff Ra,Rb are comaximal.

Proof. First suppose d divides a and b but d is not a unit. Consider a unit

U =
[

x y
z t

]
with xt−yz ∈ U(R) and a nilpotent T =

[
α β
γ −α

]
with α2+βγ =

0. Next, we compute

det(UA − T ) = (xa − α)(tb + α) − (yb − β)(za − γ) =
= ab(xt − yz) + a(αx + βz) + b(−αt + γy).

Since d divides a and b, det(UA − T ) = dm for some m ∈ R. Since d is not
a unit, so is dm, and A is not unit fine.

Conversely, suppose ua + vb = 1, for some u, v ∈ R. Then

take U =
[

b −a
u v

]
, T = (ab − 1)

[
1 −1
1 −1

]
. For this choice, UA − T =[

1 −1
ua − ab + 1 vb + ab − 1

]
for which det(UA − T ) = 1. �

Corollary 12. If a, b are not coprime then
[

a 0
0 b

]
is not fine.
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In the fine case (this is missing in [3]) we can prove

Proposition 13. Let R be a commutative domain. A diagonal matrix A =[
a 0
0 b

]
(not both a, b zero) is fine in M2(R) iff at least one equation (a−b)s+

ab ∈ U(R) is solvable in s over R iff there is a unit u ∈ U(R) such that a− b
divides ab + u.

Remark. The coprime condition is necessary for a diagonal matrix to be fine,
but is not sufficient.

Indeed, for R = Z, take coprime a = 5, b = −2. Then 7s − 10 = ±1

has no integer solutions, so
[

5 0
0 −2

]
is not fine. However

[
1 0
0 −1

] [
5 0
0 −2

]
=[

5 0
0 2

]
=

[−3 3
−3 3

]
+

[
8 −3
3 −1

]
shows it is unit fine. Hence this yields an example

of unit fine 2 × 2integral matrix which is not fine.

Another type of matrices for which the characterization of unit fine ones
is nicer and more general than the corresponding one for fine matrices are

the matrices
[

1 b
c 0

]
. In [3], the fineness of such matrices, only over Z, was

characterized by some Diophantine equations, namely

c2x2 + (2bc + 1)xy + b2y2 − 2crx − 2bry + r2 = 0

where r := bc ± 1.

Using this it was noticed that
[

1 2
3 0

]
=

[−1 3
−1 2

]
+

[
2 −1
4 −2

]
is fine, but[

1 2
−3 0

]
is not fine in M2(Z).

Since
[

1 2
3 0

]
=

[
1 0
0 −1

] [
1 2

−3 0

]
, it follows that

[
1 2

−3 0

]
is unit fine but

not fine.
However, for unit fine matrices, we can prove a general result:

Theorem 14. The 2 × 2 matrices A =
[

1 b
c 0

]
, for b, c ∈ R, are unit fine over

any unital ring R.

Proof. For any a ∈ R, observe that[
a −1
1 0

] [
1 b
c 0

]
=

[
a − c b(a − c) + 1

1 b

]
+

[
0 bc − 1
0 0

]

where both U =
[

a −1
1 0

]
and W =

[
a − c b(a − c) + 1

1 b

]
are invertible (U−1 =[

0 1
−1 a

]
and W−1 =

[−b b(a − c) + 1
1 −a + c

]
). Hence UA = W +T and A is indeed

unit fine. �

Finally, we characterize unit fine 2 × 2 matrices with zero second row.
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Theorem 15. Let R be any commutative domain. A matrix
[

a b
0 0

]
(a �= 0 �= b)

is unit fine iff Ra and Rb are comaximal ideals.

Proof. One way, suppose d divides a and b but d is not a unit. Consider a

unit U =
[

x y
z t

]
with xt − yz ∈ U(R) and a nilpotent T =

[
α β
γ −α

]
with

α2 + βγ = 0. Next, we compute

det(UA − T ) = (xa − α)(zb + α) − (xb − β)(za − γ) =
= a(αx + βz) + b(−αz + γy).

Since d divides a and b, det(UA − T ) = dm for some m ∈ R. Since d is not
a unit, so is dm and A is not unit fine.

Conversely, suppose ua + vb = 1, for some u, v ∈ R. Then take U =[−b −u
a −v

]
, T =

[−uv u2

−v2 uv

]
. For this choice, UA − T =

[−ab + uv −b2 − u2

a2 + v2 ab − uv

]

for which det(UA − T ) = (ua + vb)2 = 1. �

Remark. (1) Two special cases are not covered by Theorem 11 and Theo-
rem 15.

Over any commutative ring, if (say) b = 0 (but a �= 0) then
[

a 0
0 0

]

is unit fine iff a ∈ U(R), and
[

0 b
0 0

]
is unit fine iff b ∈ U(R).

(2) It is easy to check that, for any commutative domain, if A = [aij ],
1 ≤ i, j ≤ 2 and d is a common divisor of a11, a12, a21, a22 that is not a
unit, then A is not unit fine.

(3) In [3], examples were given to show that “fine” and “clean” properties
are independent for elements. These examples also show the indepen-
dence of the “unit fine” and “clean” properties, for elements: if b is not a

unit, the nilpotent
[

0 b
0 0

]
is clean but not unit fine and

[
a 0
0 1

]
is unit fine

but not clean over any commutative domain S if a /∈ U(S)∪ (1+U(S)).

4. Matrix Rings Over Unit Fine Rings

A condition which assures that matrix rings over unit fine rings are unit fine
is the elementary divisor property. Actually, this property also assures that
matrix rings over unit nil-clean rings are unit nil-clean. The proof is similar
(see [1]).

No need of this condition for unit clean rings: matrix rings over unit
clean rings are unit clean (see [2,9]).

Recall that a matrix A (not necessarily square) over a ring R admits a
diagonal reduction if there exist invertible matrices P and Q, such that PAQ
is a diagonal matrix (dij), for which dii is a divisor of di+1,i+1 for each i. A
ring R is called an elementary divisor ring provided that every matrix over
R admits a diagonal reduction.
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Elementary divisor rings form a subclass of Bezout rings (rings in which
every finitely generated left or right ideal is principal) and include PIDs, left
PIDs which are Bezout (in particular division rings), valuation rings, the ring
of entire functions, etc.

Proposition 16. Let R be an elementary divisor ring, and let n be a positive
integer. If R is unit fine, then Mn(R) is unit fine, i.e., every n × n matrix
over R is equivalent to a fine matrix.

Proof. Let A ∈ Mn(R). Then, there exist U, V ∈ GLn(R), such that UAV =
diag(a1, ..., an). As R is unit fine, we can find ui ∈ U(R), such that uiai =
wi+ti for each i, where wi ∈ U(R) and ti ∈ N(R). Therefore, diag(u1, ..., un)
UAV = diag(w1, ..., wn) + diag(t1, ···, tn) is fine. Using Theorem 5, Mn(R) is
unit fine. �

Using the pattern of the proof from [3], of the Main Theorem ” matrix
rings over fine rings are fine”, we prove

Theorem 17. Let S be a ring such that 1 ∈ U(S) + U(S) and let n be a
positive integer. If S is unit fine, so is R := Mn(S), for any n.

In the sequel, we just emphasize the modifications in the sequence of
results which finally give this proof, for unit fine rings, instead of fine rings.

The first important ingredient is Proposition 3.2 ( [3]), for which an
adaptation is the following:

Proposition 18. Let M =
[

A B
C D

]
∈ R = Mn(S), where A ∈ Mk(S) and

D ∈ Mn−k(S). If A ∈ u−Φ(Mk(S)) and D ∈ u−Φ(Mn−k(S)), then M ∈
u − Φ(R).

Proof. Let UA = W + T and U ′D = W ′ + T ′ be unit fine decompositions in
Mk(S) and Mn−k(S) respectively. Then[

U 0
0 U ′

]
M =

[
W 0

U ′C W ′

]
+

[
T UB
0 T ′

]
. (∗)

Here, the matrix on the left of M and the first matrix on the right-hand side
are invertible in R. On the other hand, a high power of the second matrix
on the right-hand side is strictly upper triangular, so the second matrix is
nilpotent in R. Thus, (*) above is a unit fine decomposition for M in R. �

Applying this proposition with an induction on the number of diagonal
blocks of a block matrix, we arrive at the Block Theorem ( [3]): If M =
(Aij) ∈ R = Mn(S) is a block matrix where the blocks {Aij} are such that
each Aii is a unit fine square matrix, then M ∈ u−Φ(R).

Next, recall the

Definition. For n ≥ 2, we say that a matrix
[

A β
γ d

]
∈ R is in good form if

A ∈ Mn−1(S) is nonzero and d ∈ S is also nonzero.

Then there are no differences in the proofs of
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Lemma 19. Suppose there exists an equation 1 = u+v ∈ S where u, v ∈ U(S).

Then any matrix M =
[

a b
c d

]
with a �= 0 is similar to a matrix in good form.

Corollary 20. Suppose there exists an equation 1 = u + v ∈ S where u, v ∈
U(S). Then any nonzero matrix M =

[
a b
c d

]
is similar to a matrix in good

form.

Proposition 21. Suppose there exists an equation u + v = 1 ∈ S where u, v ∈
U(S). Then for any n ≥ 2, any nonzero matrix M =

[
A β
γ d

]
∈ R = Mn(S)

(where d ∈ S and A ∈ Mn−1(S)) is similar to a matrix in good form.

This way we are ready for the proof of Theorem 17, the unit fine version
of the Main Theorem in [3].

Proof. In the case |S| > 2, if we have 1 ∈ U(S) + U(S), the proof works also
for unit fine matrices, just using Proposition 18.

In the case |S| = 2, i.e. S ∼= F2 the proof continues by induction on n
in a more general case: S is a division ring.

To prove that M =
[

A β
γ d

]
�= 0 is in u−Φ(R), we begin by noting that,

we may assume (up to similarity) that A �= 0. If d �= 0, we are done. So we
may assume that d = 0. By the inductive hypothesis, we have a unit fine
decomposition UA = W + T in Mn−1(S).

Thus we can write
[

U 0
0 1

]
M =

[
W Uβ + δ
γ 0

]
+

[
T −δ
0 0

]
where δ is a

column vector that is to be chosen. Here, the second summand is nilpotent, so
we are done if δ can be chosen such that the first summand on the right-hand
side is invertible. We go into the following two cases.

Case 1. γ �= 0. We perform on the first summand of the right-hand side

the following block elementary transformation:
[

In−1 0
−γW−1 1

] [
W Uβ + δ
γ 0

]
=[

W Uβ + δ
0 −γW−1(Uβ + δ)

]
.

In view of this equation, we are done if δ can be chosen such that
γW−1(Uβ + δ) = 1, for then the first summand on the right-hand side will
be invertible. Since γ �= 0, we have γU−1 �= 0 too, so we can certainly solve
the equation γW−1(Uβ + δ) = 1 over the division ring S since (by varying
δ) the vector Uβ + δ can be arbitrarily chosen.

Case 2. γ = 0. If β �= 0, we can repeat the above argument to complete

the proof. Thus, we may also assume that β = 0, so now M =
[

A 0
0 0

]
.

Suppose the i-th row γ′ of A is nonzero. Conjugating M by the elementary

matrix In +Eni, we arrive at a new matrix
[

A 0
γ′ 0

]
where γ′ �= 0. We are now

back to Case 1, so the proof is complete. �
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The following remains an open
Question. Are matrix rings over unit fine rings, unit fine ? That is, can

we overcome the obstruction 1 ∈ U(S) + U(S) ?

5. Example of Unit Fine Ring

Let R be the ring of endomorphisms of a countable-dimensional vector space
V over a field k, and I the ideal of elements of R with finite-dimensional
image in V . The ring R and the factor ring R/I were widely used over years
as examples of several sorts (e.g. R is not unit-regular, R/I is simple). Notice
that R is (von Neumann) regular. So is any factor ring, including R/I.

Moreover, R has precisely three ideals: 0, I, R. Consequently, R/I is
simple.

Already in 2015, when the paper [3] was elaborated, it was stated the
following

Open question: is R/I a fine ring ?
After 5 years, this question is still unanswered.
This way, the next proposition, can be viewed as a positive answer to a

somewhat weaker
Question: Is R/I a unit fine ring ?
In this last section, suggested by George Bergman, we shall use the term

”biassociate” instead of ”equivalent”, in order to avoid the possibly confusing
term ”equivalent-equivalence class”. That is a, b ∈ R are called biassociate if
there are units p, q with b = paq.

George Bergman proved the following

Proposition 22. If R is the ring of endomorphisms of a countable-dimensional
vector space V over a field k, and I the ideal of elements of R with finite-
dimensional image in V , then R/I is unit fine.

Proof. We write elements of R on the left of their arguments, and compose
them accordingly.

Because of the length of this proof some details are only sketched. There
are six steps.
(1) In the ring R/I described above, one finds that there are just four

biassociate-equivalence classes of nonzero elements:
(i) the set of units, i.e. elements that are not left nor right zero-

divisors; equivalently, that have left and right inverses,
(ii) the set of elements that are right but not left zero-divisors; equiva-

lently, elements that have left inverses which are not right inverses,
(iii) the set of elements that are left but not right zero-divisors; equiva-

lently, elements that have right inverses which are not left inverses,
(iv) the set of elements that are both left and right zero-divisors; equiv-

alently, elements that have no right nor left inverses.
For example, here are the details for (ii): if a′a = 1 then, by left

multiplication with a′, ab = 0 implies b = 0, so a is not a left zero-
divisor. If aa′ �= 1 then aa′ − 1 �= 0 and since (aa′ − 1)a = a − a = 0, a
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is a right zero-divisor; the converse holds if the ring is (von Neumann)
regular ; suppose a = ara; then a(1 − ra) = 0 and since a is not a left
zero-divisor, 1 − ra = 0, i.e. a has a left inverse.

These classes are clearly disjoint.
Roughly speaking, we deduce (1) using the fact that in R, we

can construct elements by specifying where they take each element of
a basis of V . In this way, we build elements whose images in R/I are
units, which we can put on the right and left side of any element in one
of these classes to bring it to a fixed member of that class.

(2) Since an element is unit fine iff it is biassociate with a fine element, to
show that R/I is unit fine, it suffices to exhibit one fine element in each
of these four classes.

(3) This is easy for classes (i) and (iv), because units are fine, respectively,
we can embed M2(k) in R/I, and get an example there.

Here is how to do it for classes (ii) and (iii).
(4) Verify that R is embeddable in R/I. (Indeed, every endomorphism x

of V induces an endomorphism of a countable direct sum of copies of
V . Choosing an isomorphism between the vector space V and such a
countable direct sum of copies of V , we get a homomorphism h : R → R
which sends each nonzero element of R to an element with infinite-
dimensional image; hence the composite homomorphism R → R → R/I
is an embedding.) Hence to show that there are fine elements of R/I
in classes (ii) and (iii) above, it suffices to show that there are such
elements in R.

(5) To get an element of R in class (ii), take V to have a basis of elements
bi,j , where i and j are integers, such that i ≥ 0, and if i = 0, then j ≥ 0.
(So these are pairs that are ≥ (0, 0) under lexicographic ordering.)

Let x : V → V send every bi,j to bi,j+1. This has a left inverse,
which moves each bi,j to bi,j−1, except for b0,0, which it sends to 0. Since
x is not onto, it can’t have a right inverse. Now here are a unit u and a
nilpotent element t that sum to x:

u(bi,j) = bi,j+1 unless j = −1
u(bi,−1) = bi−1,0 (for all i > 0),
t(bi,j) = 0 unless j = −1
t(bi,−1) = bi,0 − bi−1,0 for all i > 0.

(6) An element y of R in class (iii) is given by a left inverse of the
above x. �

Therefore, it will follow that the class of all the fine rings is properly
included in the class of all the unit fine rings, using the previous example, if
one can show that R/I is not fine.

Another possibility would be to show that R/I is not 2-good (see the
end of Sect. 2). Since fine rings are 2-good, this would also prove the proper
containment in discussion.
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