STRONGLY REGULAR ELEMENTS IN REDUCED RINGS ARE UNIT-REGULAR, AN UNDERGRADUATE PROOF

Definitions. An element a of a ring R is strongly regular if there is $x \in R$ such that $a^2x = a$ and is unit-regular if there a unit u such that a = aua.

A ring is reduced if it has no nonzero nilpotents, Abelian if its idempotents are central, and is Dedekind finite if one-sided invertible elements are two-sided (i.e., for all $a, b \in R : ab = 1 \Rightarrow ba = 1$).

For an idempotent $e, \overline{e} = 1 - e$ denotes the complementary idempotent.

Lemma 1. (i) Reduced rings are Abelian.

(ii) Abelian rings are Dedekind-finite.

Proof. (i) Let $e^2 = e \in R$ and $x \in R$. Computation shows that $(ex - exe)^2 = (xe - exe)^2 = 0$. Hence ex = exe = xe, i.e., $e \in Z(R)$.

(ii) Suppose ab = 1. Then $(ba)^2 = ba$ is an idempotent, so central by hypothesis. Thus $b = (ba)b = b(ba) = b^2a$ and so $1 = ab = ab^2a$.

Finally, $ba = (ab^2a)ba = (ab^2)(ab)a = ab^2a = 1.$

The result in the title is well-known from more than 70 years (see [1]). In the sequel, we provide a undergraduate proof.

Theorem 2. In any reduced ring, strongly regular elements are unit-regular.

Proof. Suppose $a = a^2x$. Then $(a - axa)^2 = a^2 + axa^2xa - a^2xa - axa^2 = a^2 + axa^2 - a^2 - axa^2 = 0$, so a = axa, since R is reduced. Since reduced rings are Abelian, e := ax is a central idempotent.

Consider $u = ex + \overline{e}$, $v = ea + \overline{e}$. Then (since ea = ae) $vu = eaex + \overline{e}^2 = e^2ax + \overline{e} = e + \overline{e} = 1$. Since reduced rings are also Dedekind finite, uv = 1 and so $u = v^{-1} \in U(R)$. Finally, from $a = a^2x = ae$ we get $a\overline{e} = 0$, so now $aua = a(ex + \overline{e})a = axa = a$.

The existing proofs (see [1] or [2]) use the same steps, but use a graduate machinery in order to show that ax = xa, which is used (together with $e \in Z(R)$) in order to check uv = 1 ($uv = (ex + \overline{e})(ea + \overline{e}) = e(xea) + \overline{e}^2 = e(xa) + \overline{e} \stackrel{!}{=} e(ax) + \overline{e} = e + \overline{e} = 1$). Namely,

Arens, Kaplansky. If R is strongly regular, we deduce that R is semi-simple, that any primitive ideal M in R is maximal, and that R - M is a division ring. It follows that, for the x satisfying $a^2x = a$, ax must map into either 0 or 1 modulo a maximal ideal. Hence ax = xa].

Lam **Ex.12.6C.** Consider any representation of R as a subdirect product of division rings $(\phi_i) : R \to \prod D_i$. Since $\phi_i(e) = \phi_i(a)\phi_i(x)$ is either 0 or 1 in D_i , we see that also $\phi_i(e) = \phi_i(x)\phi_i(a)$ (for every *i*), and hence ax = xa].

References

- R. F. Arens, I. Kaplansky Topological representation of algebras. Trans. Amer. Math. Soc. 63 (1948), 457-481.
- [2] T. Y. Lam Exercises in classical Ring Theory. Problem Books in Math., Springer-Verlag New York Inc. 1995.