STRONGLY REGULAR ELEMENTS IN REDUCED RINGS ARE UNIT-REGULAR, AN UNDERGRADUATE PROOF

Definitions. An element a of a ring R is strongly regular if there is $x \in R$ such that $a^{2} x=a$ and is unit-regular if there a unit u such that $a=a u a$.

A ring is reduced if it has no nonzero nilpotents, Abelian if its idempotents are central, and is Dedekind finite if one-sided invertible elements are two-sided (i.e., for all $a, b \in R: a b=1 \Rightarrow b a=1)$.

For an idempotent $e, \bar{e}=1-e$ denotes the complementary idempotent.
Lemma 1. (i) Reduced rings are Abelian.
(ii) Abelian rings are Dedekind-finite.

Proof. (i) Let $e^{2}=e \in R$ and $x \in R$. Computation shows that $(e x-e x e)^{2}=$ $(x e-e x e)^{2}=0$. Hence $e x=e x e=x e$, i.e., $e \in Z(R)$.
(ii) Suppose $a b=1$. Then $(b a)^{2}=b a$ is an idempotent, so central by hypothesis. Thus $b=(b a) b=b(b a)=b^{2} a$ and so $1=a b=a b^{2} a$.

Finally, $b a=\left(a b^{2} a\right) b a=\left(a b^{2}\right)(a b) a=a b^{2} a=1$.
The result in the title is well-known from more than 70 years (see [1]). In the sequel, we provide a undergraduate proof.

Theorem 2. In any reduced ring, strongly regular elements are unit-regular.
Proof. Suppose $a=a^{2} x$. Then $(a-a x a)^{2}=a^{2}+a x a^{2} x a-a^{2} x a-a x a^{2}=a^{2}+$ $a x a^{2}-a^{2}-a x a^{2}=0$, so $a=a x a$, since R is reduced. Since reduced rings are Abelian, $e:=a x$ is a central idempotent.

Consider $u=e x+\bar{e}, v=e a+\bar{e}$. Then (since $e a=a e) v u=e a e x+\bar{e}^{2}=$ $e^{2} a x+\bar{e}=e+\bar{e}=1$. Since reduced rings are also Dedekind finite, $u v=1$ and so $u=v^{-1} \in U(R)$. Finally, from $a=a^{2} x=a e$ we get $a \bar{e}=0$, so now $a u a=a(e x+\bar{e}) a=a x a=a$.

The existing proofs (see [1] or [2]) use the same steps, but use a graduate machinery in order to show that $a x=x a$, which is used (together with $e \in Z(R)$) in order to check $u v=1\left(u v=(e x+\bar{e})(e a+\bar{e})=e(x e a)+\bar{e}^{2}=e(x a)+\bar{e} \stackrel{!}{=} e(a x)+\bar{e}=e+\bar{e}=1\right)$. Namely,

Arens, Kaplansky. If R is strongly regular, we deduce that R is semi-simple, that any primitive ideal M in R is maximal, and that $R-M$ is a division ring. It follows that, for the x satisfying $a^{2} x=a$, $a x$ must map into either 0 or 1 modulo a maximal ideal. Hence $a x=x a]$.

Lam Ex.12.6C. Consider any representation of R as a subdirect product of division rings $\left(\phi_{i}\right): R \rightarrow \prod D_{i}$. Since $\phi_{i}(e)=\phi_{i}(a) \phi_{i}(x)$ is either 0 or 1 in D_{i}, we see that also $\phi_{i}(e)=\phi_{i}(x) \phi_{i}(a)$ (for every $\left.i\right)$, and hence $\left.a x=x a\right]$.

8TRONGLY REGULAR ELEMENTS IN REDUCED RINGS ARE UNIT-REGULAR, AN UNDERGRADUATE PROOF

References

[1] R. F. Arens, I. Kaplansky Topological representation of algebras. Trans. Amer. Math. Soc. 63 (1948), 457-481.
[2] T. Y. Lam Exercises in classical Ring Theory. Problem Books in Math., Springer-Verlag New York Inc. 1995.

