A rank zero nonzero matrix

W. C. Brown Matrices over commutative rings

September 11, 2023

From [1].

Definition 4.1. Let $A \in \mathbb{M}_{m \times n}(R)$ with a commutative ring R. For each $t \in\{1,2, \ldots, r\}, r=\min (m, n), I_{t}(A)$ denotes the ideal generated by all $t \times t$ minors of A. Then

$$
(0)=I_{r+1}(A) \subseteq I_{r}(A) \subseteq \ldots \subseteq I_{2}(A) \subseteq I_{1}(A) \subseteq R
$$

Accordingly

$$
(0)=A n n_{R}(R) \subseteq A n n_{R}\left(I_{1}(A) \subseteq A n n_{r}\left(I_{2}(A)\right) \subseteq \ldots \subseteq A n n_{R}\left(I_{r}(A)\right) \subseteq A n n_{R}((0))=R .\right.
$$

Therefore
Definition 4.10 The rank of A, denoted $\operatorname{rk}(A)$ is the following integer: $r k(A)=\max \left\{t: \operatorname{Ann}_{R}\left(I_{t}(A)\right)=(0)\right\}$.

It follows that
4.11 (d) $r k(A)=0$ iff $A n n_{R}\left(I_{1}(A)\right) \neq(0)$ [that is, 0 is the maximum integer t above] iff there exists a nonzero $r \in R$ such that $r a_{i j}=0$ for all i, j.

Example. $A=2 I_{2}$ over \mathbb{Z}_{4}.

References

[1] W. C. Brown Matrices over commutative rings. Marcel Dekker Inc., 1993.

