
RINGS WITH FINE NILPOTENTS
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Abstract. A nonzero sum of a unit and a nilpotent element in a ring is called a fine element.
This is a study of rings in which every nonzero nilpotent is fine, which we call NF rings.

1. Introduction

Throughout, rings are nonzero, associative with identity. Recall from [1] that a nonzero

element in a ring is called fine if it is a sum of a unit and a nilpotent and a ring is a fine ring if

every nonzero element is fine. Fine rings form a proper class of simple rings and were the topic

of the paper [1]. The rings whose nonzero idempotents are fine turned out to be an interesting

class of indecomposable rings and were studied in [4]. In this note, we study rings all whose

nonzero nilpotents are fine. Such rings will be called NF (nonzero nilpotents are f ine). NF

rings include fine rings and reduced rings. In Section 2, we determine the NF property of several

standard constructions of rings such as ideal extensions, direct products and polynomial (and

power series) rings. Section 3 is on the NF property of a matrix ring. A direct proof for “the

matrix rings over division rings are NF” is given. For n ≥ 2, if the matrix ring Mn(R) is NF,

then R is simple; for a commutative ring R, Mn(R) is NF iff R is a field. Section 4 is about fine

nilpotents in a ring. For a GCD domain R (i.e. every pair of nonzero elements has a greatest

common divisor), the fine nilpotents in M2(R) can be identified by a specific form.

For a ring R, we denote by J(R), U(R) and nil(R) the Jacobson radical, the unit group and

the set of nilpotents of R, respectively. We write Mn(R) for the ring of n× n matrices over R

whose identity is denoted by In and Tn(R) for the ring of upper triangular n×n matrices over

R. By Eij ∈ Mn(R) we denote the standard matrix unit, i.e., Eij has a 1 in the (i, j) position

and zeros elsewhere. As in [1], we denote by Φ(R) the set of fine elements of a ring R.
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2. NF rings

In this section, we present examples of NF rings, through some standard constructions of

rings. Our first lemma is a crucial one in the entire discussion. A ring is called uni (see [3]) if

units commute with nilpotents. A ring is reduced if it does not contain any nonzero nilpotents.

Lemma 2.1. (1) Every reduced ring is an NF ring; the converse holds if R is a uni ring.

(2) If R is NF and I is a proper ideal of R, then nil(R)∩I = 0; particularly, nil(R)∩J(R) =

0.

Proof. (1) Since a reduced ring R does not have nonzero nilpotents, R is NF.

Suppose that R is a uni ring that is NF. If 0 6= a ∈ nil(R), then a = u+ b where u is a unit

and b is nilpotent. As u, b commute, u + b is a unit, i.e., a is a unit, a contradiction. So R is

reduced.

(2) If 0 6= a ∈ nil(R) ∩ I, then a = u + b where u is a unit and b is nilpotent. So, in R/I,

−ū = b̄ with b̄ a nilpotent and −ū a unit, a contradiction. �

By Lemma 2.1(2), the following rings are not NF: the trivial extension R ∝ M of a ring R

by a nontrivial (R,R)-bimodule M ; R[t]/(tn) (n ≥ 2); Tn(R) (n ≥ 2); the formal triangular

matrix ring

[

R M
0 S

]

where R,S are rings and M a nontrivial (R,S)-bimodule.

Another consequence of Lemma 2.1 is

Corollary 2.2. A local ring is NF iff it is reduced.

We continue discussing some other standard constructions of rings.

Proposition 2.3. Let R =
∏

α∈ΛRα be a direct product of rings with |Λ| ≥ 2. Then R is NF

iff for each α ∈ Λ , Rα is reduced.

Proof. (⇐) If each Rα is reduced, then R is reduced, so R is NF.

(⇒) Assume that Rαi
is not reduced. Then Rαi

contains a nonzero nilpotent xαi
. Let

x = (xα) ∈ R where xα = 0 if α 6= αi. Then x is a nonzero nilpotent. But, as |Λ| ≥ 2, x is not

a fine element in R. This contradiction shows that Rαi
is reduced. �
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Let R be a ring and let V be an (R,R)-bimodule which is a non-unital ring in which

(vw)r = v(wr), (vr)w = v(rw) and (rv)w = r(vw) hold for all v, w ∈ V and r ∈ R. Then the

ideal-extension I(R;V ) of R by V is defined to be the additive abelian group I(R;V ) = R⊕ V

with multiplication (r, v)(s, w) = (rs, rw + vs + vw). Note that if S is a ring and S = R ⊕ A

where R is a subring and A ⊳ S, then S ∼= I(R;A).

Theorem 2.4. Let S = I(R;V ) be the ideal-extension of R by V . Then S is NF iff R is NF

and V is reduced.

Proof. (⇒) Let 0 6= a ∈ nil(R). Then (a, 0) ∈ S is a nonzero nilpotent, so (a, 0) = (u, y)+ (b, z)

where (u, y) ∈ U(S) and (b, z) ∈ nil(S). Thus, a = u+ b with u ∈ U(R) and b ∈ nil(R). So R

is NF.

Assume that 0 6= x ∈ V and x2 = 0. Then (0, x) ∈ S is a nonzero nilpotent, so (0, x) =

(u, y) + (b, z) where (u, y) ∈ U(S) and (b, z) ∈ nil(S). Thus, 0 = u + b with u ∈ U(R) and

b ∈ nil(R), a contradiction.

(⇐) We first show that (a, x) ∈ nil(S) implies x = 0. That is, the following statement (Pn)

holds for all n ≥ 1.

(Pn): whenever (a, x)
n = 0 in S, x = 0.

It is clear that (P1) holds. Assume that n ≥ 1 and (Pn) holds. We next show that (Pn+1)

holds. Suppose (a, x)n+1 = 0. Thus (a2, ax + xa+ x2)n = ((a, x)2)n = (a, x)2n = 0. By (Pn),

we have ax + xa + x2 = 0. Moreover, we have an+1 = 0. Then (axan)2 = 0. So axan = 0 as

V is reduced. Thus, (axan−1)2 = 0, and so axan−1 = 0. Continuing in this way, we see that

axa = 0. So (ax)2 = 0 and (xa)2 = 0. As V is reduced, we deduce ax = xa = 0. It follows

from ax+ xa+ x2 = 0 that x2 = 0, and hence x = 0. So (Pn+1) holds.

To show that S is NF, let (a, x) be a nonzero nilpotent of S. As proved above, x = 0.

So a is a nonzero nilpotent of R. Hence a = u + b where u ∈ U(R) and b ∈ nil(R). Then

(a, x) = (u, 0) + (b, 0) with (u, 0) ∈ U(S) and (b, 0) ∈ nil(S). So S is NF. �

We note that V being reduced alone does not imply that I(R;V ) is NF. To see this, consider

I(R;V ) with V = R/J(R) such that R/J(R) is reduced, but R is not NF; for example, let

R = Z4.
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Following Krempa [7], a ring R with an endomorphism σ is called σ-rigid if aσ(a) = 0, a ∈ R,

implies a = 0. By Matczuk [9, Theorem A], R is σ-rigid iff R[t;σ] is reduced. By Matczuk [9,

Theorem A] and Krempa [7, Corollary 3.5], R is σ-rigid iff R[[t;σ]] is reduced.

Corollary 2.5. Let R be a ring with an endomorphism σ. The following are equivalent:

(1) R[t;σ] is NF.

(2) R[[t;σ]] is NF.

(3) R is σ-rigid.

Proof. (1) ⇔ (3) Note that R[t;σ] ∼= I(R;V ), where V = R[t;σ]t.

Suppose (1) holds. Then V is reduced by Theorem 2.4. If aσ(a) = 0 where a ∈ R, then

(at)2 = aσ(a)t2 = 0. So at = 0, and hence a = 0. So (3) holds.

If (3) holds, then R[t;σ] is reduced by [9, Theorem A], so R[t;σ] is NF.

(2) ⇔ (3) Note that R[[t;σ]] ∼= I(R;V ), where V = R[[t;σ]]t.

Suppose (2) holds. Then V is reduced by Theorem 2.4. If aσ(a) = 0 where a ∈ R, then

(at)2 = aσ(a)t2 = 0. So at = 0, and hence a = 0. So (3) holds.

If (3) holds, then R is reduced by [9, Theorem A], and so R[[t;σ]] is reduced by [7, Corollary

3.5]. Hence R[[t;σ]] is NF. �

Corollary 2.6. For a ring R, R[[t]] is NF iff R[t] is NF, iff R is reduced.

Examples 2.7. (1) If R is a domain and σ is a one-to-one endomorphism of R. Then

R[t;σ] and R[[t;σ]] are NF.

(2) Let R = Z2 ×Z2, and σ be the endomorphism of R given by σ(r, s) = (s, r). Then R is

reduced but not σ-rigid, because, for a = (1, 0) ∈ R, aσ(a) = 0. So R[[t;σ]] and R[t;σ]

are not NF.

(3) Let R =
∏

Ri be a direct product of domains. Let σi be a one-to-one endomorphism of

Ri for each i, and let σ be the endomorphism of R given by σ
(

(ri)
)

=
(

σi(ri)
)

. Then

R is σ-rigid. So R[[t;σ]] and R[t;σ] are NF.
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3. Matrix rings

The question here is when a matrix ring is NF. This is a natural approach in order to find

non-reduced NF rings. Since matrix rings over fine rings are fine (see [1]), it follows at once

that

Theorem 3.1. Matrix rings over fine rings are NF.

Since division rings are fine rings we also get

Corollary 3.2. Matrix rings over division rings are NF.

First recall that every nilpotent matrix over a field is similar to a block diagonal matrix










B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bk











, where each block Bi is a shift matrix (possibly of different sizes).

Actually, this form is a special case of the Jordan canonical form for matrices. A shift matrix

has 1’s along the superdiagonal and 0’s everywhere else, i.e. S =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0















, as

n× n matrix. When n = 1, S = 0.

We were not able to find a reference for the following

Theorem 3.3. The following are equivalent for a ring R:

(1) Every nilpotent matrix over R is similar to a block diagonal matrix with each block a

shift matrix (possibly of different sizes).

(2) R is a division ring.

Proof. (1) ⇒ (2). Let 0 6= a ∈ R. By hypothesis, the nilpotent aE12 in M2(R) is similar to a

block diagonal matrix with each block a shift matrix. It follows that aE12 must be similar to

E12. So there exists an invertible matrix U = (uij) ∈ M2(R) such that U(aE12) = E12U . It

follows that u21 = 0 and u22 = u11a. Thus, U =

[

u11 u12

0 u11a

]

. Let V = (vij) be the inverse

of U . From UV = I2 = V U , it follows that

u11av22 = 1, v11u11 = 1, v21u11 = 0 and v21u12 + v22u11a = 1.
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Thus, u11 is a unit, which gives v21 = 0. So v22 is also a unit, and hence a = u−1
11 v

−1
22 is a unit.

Therefore, R is a division ring.

(2) ⇒ (1). This can be proved by induction on the size of the nilpotent matrix, using the

argument in Case 3 of the proof of [13, Theorem 5]. �

For a direct proof of the previous corollary, since nilpotents and fine elements of rings are

invariant under conjugations, it suffices to show

Lemma 3.4. Let Sk denote the shift matrix of size k over R.

(1) If n ≥ 2, then Sn ∈ Mn(R) is fine.

(2) If A =

[

Sk 0
0 0

]

∈ Mn(R) with n > k > 1, then A is fine.

Proof. (1) In Mn(R), Sn = −En1 + (Sn + En1) is a sum of a nilpotent and a unit.

(2) We see that A =









0

[

0 0

−1 0

]

[

0 0

−1 0

]

−Sn−k









+(Sn +En1) is a sum of a nilpotent and

a unit. �

Below is a partial answer to the question of when a matrix ring is NF.

Theorem 3.5. If Mn(R) is NF (n ≥ 2), then R is simple.

Proof. Let S = Mn(R). IfK is a proper ideal of R, then KE1n ⊆ Mn(K)∩nil(S). So KE1n = 0

by Lemma 2.1, i.e., K = 0. �

We do not know if R simple implies that Mn(R) is NF.

Corollary 3.6. Let R be a commutative ring and n ≥ 2. Then Mn(R) is NF iff R is a field.

Remarks 3.7. (1) The NF property does not pass to subrings: for a division ring D,

Mn(D) (n ≥ 2) is NF, but Tn(D) is not NF.

(2) The NF property does not pass to quotient rings: the ring Z is NF, but Z4 is not NF.

However, if R is NF and nilpotents lift modulo the ideal I, then R/I is NF.

(3) The NF property does not pass from R to R/J(R): let R := Z(3) be the localization

of Z at the prime ideal 3Z, and let Q be the ring of quaternions over R. That is, Q
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is the algebra over R with canonical R-basis {1, i, j, k}, in which the multiplication is

R-bilinear and is subject to i2 = j2 = k2 = −1 and ijk = −1. Then T := Q ⊕ Q

is a reduced ring, so is NF. By [12, Example 2.3], Q/J(Q) ∼= M2( Z3), so T/J(T ) ∼=

Q/J(Q)⊕Q/J(Q) ∼= M2(Z3)⊕M2(Z3), which is not NF by Proposition 2.3.

(4) The NF property does not pass to matrix rings: the ring Z is NF but M2(Z) is not NF.

Corollary 3.8. Left R be a semiperfect ring with J(R) nil (e.g., R is a one-sided perfect ring).

Then R is NF iff R is the matrix ring over a division ring or a direct sum of division rings.

Proof. (⇐) The implication is clear.

(⇒) Since J(R) is nil, J(R) = 0 by Lemma 2.1. So R = R1 ⊕ · · · ⊕Rn where each Ri is the

matrix ring over a division ring. If n ≥ 2, then R must be reduced by Proposition 2.3, and so

R is a direct sum of division rings. �

A ring R is said to be of bounded index (of nilpotence) if there is a positive integer n such

that an = 0 for all nilpotent elements a of R. The least such integer is called the index of R. A

ring R is called potent if idempotents lift modulo J(R) and every one-sided ideal not contained

in J(R) contains a nonzero idempotent. If R is potent, then every nonzero one-sided ideal of

R/J(R) contains a nonzero idempotent.

Proposition 3.9. Let R be a potent ring of bounded index. Then R is NF iff R is a reduced

ring or a matrix ring over a division ring.

Proof. (⇐) The implications is clear.

(⇒) Let R be of bounded index n. We may assume that R is not reduced. Then n > 1,

and there exists a ∈ R such that an = 0 and an−1 6= 0. By Lemma 2.1, an−1 /∈ J(R), so, in

R := R/J(R), ān−1 6= 0 and ān = 0. Since R is potent, every nonzero one-sided ideal of R

contains a nonzero idempotent. Therefore, by [8, Theorem 2.1], there exists ē2 = ē ∈ RāR such

that ēRē ∼= Mn(S) where S is a non-trivial ring. Since idempotents lift modulo J(R), we may

assume that e2 = e. Thus, eRe/J(eRe) ∼= ēRē ∼= Mn(S). By [11, Corollary 6], idempotents in

eRe/J(eRe) can be lifted to idempotents in eRe, so every complete system of matrix units in

eRe/J(eRe) can be lifted to a complete system of matrix units in eRe. Thus eRe = Mn(T )
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where T is a non-trivial ring. So, e = 1 by Proposition 2.3, and hence R = Mn(T ). Since

Mn(T ) is NF, T is simple by Theorem 3.5. Since R is potent, T is potent by [10, Corollary 1.7].

Since R is of bounded index n, for any nonzero idempotent t of T , e = tIn is an idempotent of

R such that eRe = Mn(tT t), so e is central by [6, Lemma 6.10], and hence t is central. Hence

T is a division ring. �

4. Fine nilpotent elements

What can be said about fine nilpotent elements in a non-NF ring? Here the fine nilpotent

elements in the 2×2 matrix ring over a GCD domain are characterized. An integral domain is a

GCD domain if every pair a, b of nonzero elements has a greatest common divisor, denoted by

gcd(a, b). GCD domains include unique factorization domains, Bézout domains and valuation

domains. To simplify the writing, equalities below are used modulo association (in divisibility).

For example, a = b means b = ua for a unit u.

Lemma 4.1 lists some well-known properties of a GCD domain.

Lemma 4.1. Let R be a GCD domain with a, b, c ∈ R.

(1) gcd(ab, ac) = a gcd(b, c).

(2) If gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1.

(3) If gcd(a, b) = 1 and a | bc, then a | c.

Lemma 4.2. Let R be a GCD domain and b, c ∈ R.

(1) gcd(b, c) = 1 implies gcd(bn, c) = 1 for any n ≥ 1.

(2) Let gcd(b, c) = 1. If bc is a square, so are (up to uits) both b and c.

Proof. (1) This follows from Lemma 4.1(2).

(2) Let a2 = bc. Denote b1 = gcd(b, a) and c1 = gcd(c, a). Then b = b1b2, c = c1c2 and

a = b1x = c1y for some b2, c2, x, y ∈ R with gcd(b2, x) = 1 = gcd(c2, y). Since gcd(b, c) = 1, it

follows that gcd(bi, ci) = 1, i ∈ {1, 2}.

From a2 = bc we get b1c1xy = b1b2c1c2, whence xy = b2c2. Using this as x | b2c2 together

with gcd(b2, x) = 1, we obtain x | c2. Analogously we derive y | b2 and conversely b2 | y and

c2 | x. Hence x = c2, y = b2.
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Finally b1c2 = a = b2c1 used as in the previous two lines gives (together with gcd(bi, ci) = 1,

i ∈ {1, 2}) b1 = b2 and c1 = c2, as desired. �

For a square matrix A over a commutative ring R, the determinant and trace of A are

denoted by det(A) and tr(A), respectively. Notice that a nilpotent 2×2 matrix over an integral

domain R is of form

[

α β
γ −α

]

with α2 + βγ = 0. Indeed, let Q be the field of fractions of R.

Then in M2(Q), B is similar to qE12 for some q ∈ Q. So tr(B) = 0 and det(B) = 0.

Proposition 4.3. Every nonzero nilpotent 2× 2 matrix over a Bézout domain R is similar to

rE12, for some r ∈ R.

Proof. Take T =

[

x y
z −x

]

and x2+yz = 0. We will construct an invertible matrix U = (uij)

such that TU = U(rE12) with a suitable r ∈ R.

Let d = gcd(x, y) and denote x = dx1, y = dy1 with gcd(x1, y1) = 1. Then d2x2
1 = −dy1z

and since gcd(x1, y1) = 1 implies gcd(x2
1, y1) = 1, it follows y1 divides d. Set d = y1y2 and so

T =

[

x1y1y2 y21y2
−x2

1y2 −x1y1y2

]

= y2

[

x1y1 y21
−x2

1 −x1y1

]

= y2T
′.

Since gcd(x1, y1) = 1 there exist s, t ∈ R such that sx1 + ty1 = 1. Take U =

[

y1 s
−x1 t

]

which is invertible (indeed, U−1 =

[

t −s
x1 y1

]

). One can check T ′U =

[

0 y1
0 −x1

]

= UE12,

so r = y2. �

Fine nilpotent 2× 2 matrices over GCD domains have a specific form.

Theorem 4.4. Let R be a Bézout domain. A nilpotent matrix A =

[

a b
c −a

]

∈ M2(R) with

a2 + bc = 0 is fine iff b = ±p2, c = ∓q2 with coprime p, q ∈ R.

Proof. We discuss det(

[

a b
c −a

]

−

[

s x
y −s

]

) ∈ U(R) for s2 + xy = 0 and a2 + bc = 0.

That is (a − s)2 + (b − x)(c − y) ∈ U(R). Equivalently, a2 − 2as + s2 + bc + xy − cx − by =

−(2as+cx+by) ∈ U(R). This linear equation has solutions iff 2a, b, c are (collectively) coprime.

Since a2 + bc = 0, this is equivalent to coprime b, c and finally (using Lemma 4.2 (2)) b = ±p2,

c = ∓q2 with coprime p, q (and so a = ±pq).

Conversely, suppose up+ vq = 1 for some integers u, v. Then u2p2 + 2uvpq + v2q2 = 1 and

so s = uv, x = −v2, y = u2 is a solution for the linear equation above. More, it satisfies also
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s2 + xy = 0 , as desired. That is, one fine decomposition is

[

pq p2

−q2 −pq

]

=

[

uv −v2

u2 −uv

]

+
[

pq − uv p2 + v2

−q2 − u2 −pq + uv

]

(the determinant of the last matrix is (pu+ qv)2 = 1). �

Remark. In the previous statement and proof, instead of b = ±p2, c = ∓q2, it should be

written b = up2, c = −u−1q2 for some unit u ∈ U(R). To simplify the writting we took u = 1

Example 4.5. For b = 4, c = −1, a = 2, that is A =

[

2 4
−1 −2

]

, the linear Diophantine is

4s− x + 4y = ±1, with obvious solution s = y = 0, x = ±1 (which verifies also s2 + xy = 0).

Indeed, A =

[

0 1
0 0

]

+

[

2 3
−1 −2

]

=

[

0 −1
0 0

]

+

[

2 5
−1 −2

]

.

The solution given by the proof of the previous proposition (p = 2, q = 1) is

[

−1 −1
1 1

]

+
[

3 5
−2 −3

]

. As noticed in [2], nilpotents are not uniquely fine in M2(Z).

Examples 4.6. (1) The product of two fine nilpotents need not be fine: in M2(Z), A :=
[

2 4
−1 −2

]

=

[

0 1
0 0

]

+

[

2 3
−1 −2

]

is a fine nilpotent, and B :=

[

0 0
1 0

]

is

a fine nilpotent. Here AB =

[

4 0
−2 0

]

. Assume AB is fine. Then AB = C + U

where C =

[

a b
c −a

]

with a2 + bc = 0 and U =

[

4− a −b
−2− c a

]

is a unit. So

±1 = det(U) = (4 − a)a − b(2 + c) = 4a − a2 − 2b − bc = 2(2a − b), showing that 2

divides 1. This is a contradiction.

(2) The power of a fine nilpotent (is nilpotent but) need not be fine: in M2(Z4), A :=
[

1 1
1 1

]

=

[

0 1
0 0

]

+

[

1 0
1 1

]

is a fine nilpotent, since A4 = 02. However A2 =
[

2 2
2 2

]

∈ J(M2(Z4)), so A2 is not fine. Would A2 be fine, from a fine decomposition

A2 = U + T , with unit U and nilpotent T , we get T = −U +A2 ∈ −U + J(M2(Z4)) ⊆

U(M2(Z4)), a contradiction.

Over integral domains, an attempt to find a 3× 3 fine nilpotent of index 3, whose square is

not fine is hard work without computer aid.

Example 4.7. Consider the fine nilpotent matrix

T =





−1 −1 −1
0 0 0
1 −1 1



 =





−1 −1 0
1 0 −1
−1 0 0



+





0 0 1
1 0 −1
2 −1 0



 ,
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whose square is T 2 =





0 2 0
0 0 0
0 −2 0



. Then T 2 is not fine over any integral domain D such

that 2 is not a unit.

Indeed, for any matrix B = (bij), 1 ≤ i, j ≤ 3 with det(B) = 0 (in particular, nilpotent),

det(B − T 2) = det(B) + 2 det

[

b21 b23
b31 b33

]

− 2 det

[

b11 b13
b21 b23

]

∈ 2D, so B − T 2 cannot be a

unit.

For fine elements, examples were given in [1], which show that in general eRe ∩ Φ(R) *

Φ(eRe) for full idempotents e ∈ R. Namely, taking R = M3(Z) and e = diag (1, 1, 0) ∈ R ,

S := eR e was identified with M2(Z) (which corresponds to the “ 2 × 2 northwest corner” of

M3(Z)) and a 2× 2 matrix A which is not fine was mentioned, such that the block 3× 3 matrix

B =

[

A 0

0 0

]

is fine.

Hence, for fine nilpotent matrices this is not possible. Therefore, Proposition 4.9 below is

encouraging in order to search for a positive answer for

Question 4.8. If R is an NF ring and e ∈ R is a full idempotent, is the corner ring eRe

necessarily an NF ring?

Proposition 4.9. An integral 3× 3 matrix A =

[

B 0

0 0

]

is fine nilpotent iff the 2× 2 matrix

B is fine nilpotent iff B satisfies the characterization in Theorem 4.4.

Proof. First observe that, by block multiplication, A2 =

[

B2 0

0 0

]

, so A2 = 0 iff B2 = 0, that

is, A is nilpotent (of index 2) iff B is nilpotent.

Suppose, B is a fine 2 × 2 nilpotent. By Theorem 4.4, say B =

[

pq p2

−q2 −pq

]

for some

(positive) coprime p, q (the other ± cases are analogous). Hence up+ vq = 1 for some integers

u, v. Clearly, |u| p− |v| q = ±1. Then

A =





pq p2 0
−q2 −pq 0
0 0 0



 =: T + U

=





− |v| − |v| − |v|
|u| |u| |u|
|v| 2 |v| − |u| |v| − |u|



+





pq + |v| p2 + |v| |v|
−q2 − |u| −pq − |u| − |u|

− |v| |u| − 2 |v| |u| − |v|





is a fine decomposition for A (the LHS matrix is an index 3 nilpotent and the RHS matrix has

det = 1). The computations:
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det(U) =

(|u| − |v|)

∣

∣

∣

∣

pq + |v| p2 + |v|
−q2 − |u| −pq − |u|

∣

∣

∣

∣

− (|u| − 2 |v|)

∣

∣

∣

∣

pq + |v| |v|
−q2 − |u| − |u|

∣

∣

∣

∣

− |v|

∣

∣

∣

∣

p2 + |v| |v|
−pq − |u| − |u|

∣

∣

∣

∣

= (|u| − |v|)(p− q)(|u| p− |v| q) + (|u| − 2 |v|)q(|u| p− |v| q) + |v| p(|u| p− |v| q)

= [(|u| − |v|)(p− q) + (|u| − 2 |v|)q + |v| p](|u| p− |v| q) = (|u| p− |v| q)2 = 1.

As for T , we have det(T ) = tr(T ) = tr(T 2) = 0, so by Cayley-Hamilton’s theorem, T 3 = 0.

Conversely, suppose A =

[

B 0

0 0

]

is a fine nilpotent. Since A3 =

[

B3 0

0 0

]

= 0 then

B3 = 0 and so (over Z) B2 = 0 (and so B =

[

a b
c −a

]

with a2+ bc = 0). Hence A2 = 0. Now

let A =

[

B 0

0 0

]

=

[

C α
β −tr(C)

]

+

[

B − C −α
−β tr(C)

]

a (block) fine decomposition (i.e.

α =

[

α1

α2

]

and β =
[

β1 β2

]

) with nilpotent

[

C α
β −tr(C)

]

and unit

[

B − C −α
−β tr(C)

]

.

Then

det

[

C α
β −tr(C)

]

= 0 = tr(

[

C α
β −tr(C)

]2

) = tr(C2) + tr2(C) + βα, and

det

[

B − C −α
−β tr(C)

]

= ±1.

We will show that the entries of B on the secondary diagonal (i.e., b, c above) are coprime

squares of different sign. As already seen in the proof of Theorem 4.4, since a2 + bc = 0, it

suffices to show that gcd(a, b, c) = 1.

If C = [cij ], 1 ≤ i, j ≤ 2 then

det

[

C α
β −tr(C)

]

= − det(C)tr(C) + β1

∣

∣

∣

∣

c12 α1

c22 α2

∣

∣

∣

∣

− β2

∣

∣

∣

∣

c11 α1

c21 α2

∣

∣

∣

∣

= − det(C)tr(C) +

[

β

[

c12
−c11

]

β

[

−c22
c21

] ]

α

= − det(C)tr(C) + βC∗α = 0 with C∗

=

[

−c22 c12
c21 −c11

]

.

Similarly, det(B − C)tr(C) + β(B∗ − C∗)α = ±1 (here (B − C)∗ = B∗ − C∗ with B∗ =
[

a b
c −a

]

). Replacing βC∗α = det(C)tr(C) in the last equality yields

[det(B − C)− det(C)]tr(C) + βB∗α = ±1

which finally can be written

[−c211 + c222 − α1β2 + α2β1]a+ [c21tr(C) + α1β1]b+ [c12tr(C) + α2β2]c = ±1,

showing that a, b, c are indeed collectively coprime. �
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Remark 4.10. When one makes an attempt to prove that corners of NF rings are NF, the

start is considering t ∈ nil(eRe), for some (full) idempotent e ∈ R. Since nil(eRe) ⊆ nil(R),

by hypothesis there are t′ ∈ nil(R) and u ∈ U(R) such that t = t′ + u. By multiplication,

t = ete = et′e + eue. However, et′e may not be nilpotent in eRe (as seen below, it is a unit)

and eue may not be a unit in eRe (as seen below, it is nilpotent):

Taking R = M3(Z) and e ∈ R to be the full idempotent diag (1, 1, 0), S := eR e is identified

with M2(Z). Now T ′ =





−1 −1 −1
−1 0 −1
1 1 1



 is an index 3 nilpotent with unit 2× 2 N-W corner

and U =





−1 −1 0
1 1 1
1 0 0



 is a unit with nilpotent 2× 2 N-W corner.
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[4] G. Călugăreanu and Y. Zhou, Rings with fine idempotents, J. Algebra Appl. Online ready October 2020.
[5] M. Chebotar, P.H. Lee and E.R. Puczylowski, On commutators and nilpotent elements in simple rings,

Bull. London Math. Soc. 42 (2010), 191-194.
[6] T. Kosan, Z. Wang and Y. Zhou, Nil-clean and strongly nil-clean rings, J. Pure Appl. Algebra 220(2)

(2016), 633-646.
[7] J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (4) (1996), 289-300.
[8] J. Levitzki, On the structure of algebraic algebras and related rings, Trans. AMS. 74 (1953), 384-409.
[9] J. Matczuk, A characterization of σ-rigid rings, Comm. Alg., 32 (11) (2004), 4333-4336.

[10] W.K. Nicholson, I-rings, Trans. AMS. 207 (1975), 361-373.
[11] W.K. Nicholson and Y. Zhou, Strong lifting, J. Algebra 285 (2005), 795-818.
[12] B. Ungor, O. Gurgun, S. Halicioglu and A. Harmanci, Feckly reduced rings, Hacet. J. Math. Stat. 44 (2)

(2015), 375-384.

[13] G. Tang and Y, Zhou, When is every linear transformation a sum of two commuting invertible ones?, Linear
Alg. Appl. 439 (2013), 3615-3619.

Department of Mathematics and Computer Science, Babes-Bolyai University, Cluj-Napoca, Ro-

mania

E-mail address: calu@math.ubbcluj.ro
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