Integral idempotent 2×2 matrices

May 27, 2023

Any 2×2 nontrivial idempotent matrix over an integral domain is of form $E=\left[\begin{array}{cc}a & b \\ c & 1-a\end{array}\right]$ with $a(1-a)=b c$ (i.e., $\operatorname{det}(E)=0, \operatorname{Tr}(E)=1$).

Over integers we can say much more. So in the sequel $a, b, c \in \mathbb{Z}$.
Start with the degree two equation $a^{2}-a+b c=0$. The discriminant is $\Delta=1-4 b c$ is ≥ 0 only if b, c have opposite signs and since $1-4 b c$ is odd, we must have $1-4 b c=(2 k+1)^{2}$ for some integer k. This amounts to

$$
b c=-k(k+1),
$$

a product of 2 consecutive integers.
Further, for $b c=-k(k+1), a_{1,2}=\frac{1 \pm(2 k+1)}{2} \in\{-k, k+1\}$. Hence finally we have two possible idempotents:

$$
E_{1}=\left[\begin{array}{cc}
k+1 & b \\
-\frac{k(k+1)}{b} & -k
\end{array}\right]
$$

and

$$
E_{2}=\left[\begin{array}{cc}
-k & b \\
-\frac{k(k+1)}{b} & k+1
\end{array}\right]
$$

for every integer k and every (integer) divisor b of $k(k+1)$.
That is, for generate all the nontrivial idempotent 2×2 integral matrices, one starts with an integer k, forms the product $k(k+1)$ and writes all the (integer) divisors of $k(k+1)$. This way b, c are chosen such that $b c=-k(k+1)$ and $a \in\{-k, k+1\}$, as above.

