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Exercise. Determine the (unital) rings with only idempotent sums of two
idempotents.

That is, for any e = e2 and f = f2 in a ring R, e + f is also an idempotent,
or equivalently, Id(R) + Id(R) ⊆ Id(R) if Id(R) denotes the set of all the
idempotents of R.

Solution. First notice that 1 + 1 = (1 + 1)2 yields 2 = 0, that is, the
characteristics of R must be 2.

Secondly, e + f = (e + f)2 gives ef + fe = 0 and so ef = fe (using
char(R) = 2). Therefore, in such a ring, idempotents commute.

In a ring idempotents commute iff the idempotents are central (see e.g.
22.3.A in ”Exercises in Classical Ring Theory” T. Y. Lam (1995)).

Hence, such rings are Abelian (central idempotents) and of characteristics
2.

The converse is obvious: e+f = e+ef +ef +f = e+ef +fe+f = (e+f)2.

Remark. Separately, none of these two conditions is sufficient.

The characteristics of M2(F2) is 2 but

[
1 1
0 0

]
+

[
1 0
1 0

]
=

[
0 1
1 0

]
is

not idempotent (

[
0 1
1 0

]2
= I2).

Let R be any (unital) commutative ring of charateristics 6= 2. Then 1 + 1 is
not idempotent.
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