Every two isomorphic idempotents of a ring are equal iff the ring is Abelian.

Grigore Călugăreanu

April 14, 2024

Abstract

Using some information from [5], the result follows easily.

1 Isomorphic idempotents

Definition. Two idempotents e, f are isomorphic (written $e \cong f$) if $eR \cong fR$ as right *R*-modules, or equivalently, $Re \cong Rf$ as left *R*-modules. It is well-known (see [6], **21.20**) that two idempotents e, f of a ring *R* are isomorphic iff there exist $a, b \in R$ such that e = ab and f = ba).

Then it follows that

Lemma 1 Conjugate idempotents are isomorphic.

Proof. Indeed, if $f = (u^{-1}e)u$ then $e = u(u^{-1}e)$ and we use the above mentioned characterization.

Next we recall $\mathbf{Ex.22.2}$ with solution (see [5])

Lemma 2 Two central idempotents e, f in a ring are isomorphic iff if these are equal.

Proof. As equal idempotents are obviously isomorphic, suppose $e, f \in Z(R)$ (the center of R). Then e = ab, f = ba and so $f = f^2 = b(ab)a = bea = e(ba) = ef$. Similarly e = fe.

Continue with Ex.22.3A with some additions [(vi) is also Ex.12.7].

Lemma 3 The following conditions are equivalent:

 $\begin{array}{l} (i) \ e \in Z(R), \\ (ii) \ eR = Re, \\ (iii) \ e \ commutes \ with \ all \ the \ idempotents, \\ (iv) \ e \ commutes \ with \ all \ the \ idempotents \ of \ R \ that \ are \ isomorphic \ to \ e, \\ (v) \ e \ commutes \ with \ all \ the \ units, \\ (vi) \ e \ commutes \ with \ all \ the \ nilpotents. \end{array}$

Proof. The additional (iii) is obvious. As for additional (v) and (vi) just notice that

 $e \in Z(R) \Rightarrow e \text{ commutes with all units } \stackrel{unipotents}{\Rightarrow} e \text{ commutes with all nilpotents}$ tents $\stackrel{\mathbf{Ex.12.7}}{\Rightarrow} e \in Z(R). \blacksquare$

We are now ready to prove the statement in the title.

Theorem 4 In a ring, the following conditions are equivalent.

(a) any two isomorphic idempotents are equal,

(b) any two conjugate idempotents are equal,

(c) the ring is Abelian.

Proof. Since conjugate idempotents are isomorphic, (a) \implies (b).

If any two conjugate idempotents are equal, for every idempotent e and every $u \in U(R)$ we have $e = u^{-1}eu$. It follows that idempotents commute with units and so (b) \implies (c) follows from (v), the previous lemma.

If the ring is Abelian, $(c) \Longrightarrow (a)$ follows from Lemma 2.

1.0.1 Application

 $\label{eq:proposition 5 Let R be a regular ring. The following conditions are equivalent. }$

(i) R is strongly regular;

(ii) R is Abelian (regular);

(iii) Any two isomorphic idempotents of R are equal.

Moreover, in unit-regular rings two idempotents are conjugate iff these are isomorphic.

And more detailed: in a regular ring, every two isomorphic idempotents are equal iff the ring is unit-regular.

Hence, to the above proposition we can add

(iv) R is unit-regular, and also

(vi) R is right (or left) duo (see next section).

[This is **Ex. 22.4B**].

2 Refinement for conjugate idempotents

We can add two refinements:

Definitions. Two idempotents e, f are strongly right conjugated if eR = fR.

Lemma 6 The following conditions are equivalent.

 $\begin{array}{l} (1) \ eR = fR, \\ (2) \ ef = f, \ fe = e, \\ (3) \ f = e + er\overline{e} \ for \ some \ r \in R, \\ (4) \ f = eu \ for \ some \ u \in U(R), \\ (5) \ R\overline{e} = R\overline{f}. \end{array}$

Remarks. 1) Actually, ef = f, fe = e implies $f = e + ef\overline{e}$.

2) The above conditions imply that e, f are conjugated: for $u = 1 + er\overline{e}$ it follows $f = u^{-1}eu$. However, examples show that the converse fails (see **Ex. 21.4**, [5]).

Symmetrically, two idempotents e, f are strongly left conjugated. Such pairs of idempotents are (indeed) conjugated: above $u = 1 + er\overline{e}$ so $u^{-1}e = (1 - er\overline{e})e = e$. Finally, $u^{-1}eu = eu = f$.

Therefore

According to the types of idempotents described above, we introduce the following

Definitions. A ring is called *CIE* if every two **c**onjugate **i**dempotents are **e**qual.

Moreover, a ring is *CIRSC* (resp. *CILSC*) if every conjugate idempotents are right (resp. left) strongly conjugate, and, is *RSCIE* (resp. *LSCIE*) if every right (resp. left) strongly conjugate idempotents are equal.

Clearly

Proposition 7 A ring is CIE iff it is CIRSC and RSCIE iff it is CILSC and LSCIE.

Now recall some other well-known (actually equivalent) definitions.

An element $a \in R$ is right (left) subcommutative if $Ra \subseteq aR$ ($aR \subseteq Ra$) and subcommutative if it is both left and right subcommutative. A subset of Ris (left) (right) subcommutative if so is each of its elements.

The concept of one-sided subcommutativity frequently occurs in the ring theory literature under different names. For example, Birkenmeier [1, p. 569] defines an idempotent $e \in E$ to be *left (right)* semicentral if Re = eRe (eR = eRe). It is readily seen that left semicentral is equivalent to our right subcommutative.

Reid [7, Section 3] gives an example of a non–commutative left subcommutative endomorphism ring. However, subcommutative idempotents are actually central.

It is readily checked that an *idempotent* e is left subcommutative if and only if eR has a unique complement. More

Proposition 8 Let $e \in Id(R)$. The following are equivalent:

(1) e is left subcommutative.

(2) $eR\overline{e} = 0.$

(3) \overline{e} is right subcommutative.

(4) eR has a unique complement.

A related commutativity condition on rings is that one–sided ideals are two–sided.

Definition 9 A ring is called right (left) duo if every right (left) ideal is twosided.

One shows that

Proposition 10 A ring is right (left) due if and only if it is right (left) subcommutative.

As *nowadays* the term right (or left) duo is merely used, this is what we use in the sequel.

Using Lemma 6, (3) we can show

Proposition 11 A ring is RSCIE (or LSCIE) iff the idempotents are left (resp. right) subcommutative.

Proof. Indeed, (say) for the *right* part, $f = e + er\overline{e} = e$ iff $eR\overline{e} = 0$ and we use Proposition 10.

Also recall that every right (resp. left) due ring is Abelian (Ex. 22.4A, [5]).

This does **not** follow from our termnology above:

left duo \Leftrightarrow left subcommutative \Rightarrow idempotents are left subcommutative \Leftrightarrow RSCIE,

which generally does not imply CIE (equivalent to Abelian). Further, using Lemma 6 (4), we get

Proposition 12 A ring is CIRSC (or CILSC) iff for every two conjugated idempotents e, f there is a unit u such that f = eu (resp. f = ue).

References

- G. F. Birkenmeier Idempotents and completely semiprime ideals Comm. Algebra 11, (1983), 567–580.
- [2] W. C. Brown Matrices over commutative rings.
- [3] G. Călugăreanu, P. Schulz Modules with Abelian endomorphism rings. Bull. Austral. Math. Soc. 82 (1) (2010), 99-112.
- [4] K. R. Goodearl Von Neumann Regular Rings. Monographs and Studies in Mathematics, No. 4, Pitman, London-San Francisco-Melbourne, 1979, xvii + 369 pp.

- [5] T. Y. Lam Exercises in Classical Ring Theory. Second Edition, Problem Books in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 2003.
- [6] T. Y. Lam A First Course in Noncommutative Rings. Second Edition, Graduate Texts in Math., Vol. 131, Springer-Verlag, Berlin-Heidelberg-New York, 2001.
- [7] J. D. Reid On subcommutative rings, Acta Math. Acad. Sci. Hung., 16 (1965), 23–26.