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The central idempotents of any ring with identity form a Boolean algebra. This result
is largely extended for rings with generalized commuting idempotents.
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1. INTRODUCTION

In associating lattices to rings with identity, attention was mainly paid to
right (or left) principal ideals, that is, the set �aR � a ∈ R� naturally ordered by
inclusion. A celebrated class of rings, the regular rings, was defined by John von
Neumann. For such rings, every right principal ideal is (also) generated by an
idempotent, and �aR � a ∈ R� = �eR � e ∈ Id�R�� forms a complemented distributive
lattice (i.e., a Boolean algebra and/or a Boolean ring) with respect to addition and
intersection of such ideals. Therefore, this is a sublattice of the (complete) lattice
Ir�R� of all the right ideals of R.

Since right annihilators in any ring always form a (complete) lattice, which is
not generally a sublattice of Ir�R�, conditions were imposed in order to connect this
lattice to the principal ideals: a ring is right Rickart if every right annihilator of any
element is (a principal right ideal) generated by an idempotent, and right Baer, if all
the right annihilators are principal right ideals generated by idempotents.

Even more special conditions can be found in the literature: a ring is an
ISS-ring (see [3]) if for any idempotents e� f ∈ R there exists an idempotent g ∈R

with eR+ fR = gR. It is proven that R has ISS and the ACC on idempotent
generated right ideals if and only if the idempotent generated right ideals form a
ACC lattice under addition and intersection. Or, a ring R has AC1 (see [1]) if the
set of all the right annihilators forms a sublattice of Ir�R�, and has AC3 if this is a
complete sublattice of Ir�R�. Of course, left versions of all these are available.
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RINGS WITH LATTICES OF IDEMPOTENTS 1051

However, when it comes to �Id�R��≤� (the poset of all the idempotents), there
seems to be no progress from another celebrated result: B�R� = Z�R� ∩ Id�R�, that
is, the set of all the central idempotents, forms a Boolean algebra (and so a Boolean
ring and/or a distributive complemented lattice) with respect to inf�e� f� = ef and
sup�e� f� = e+ f − ef (together with ring multiplication and the special addition
e� f = e+ f − 2ef = �e− f�2).

The aim of this note is to extend this result.
In the sequel, Id�R� denotes the set of all the idempotent elements in a ring

with identity R, and, for a� b ∈ R we use the notation a ≤ b if a = ab = ba. It is
readily checked that this (binary) relation is transitive and antisymmetric on R.
However, it is reflexive (and so, a partial order) only when restricted to the set
Id�R�. Two idempotents e, f are orthogonal if ef = fe = 0, and isomorphic if e = ab

and f = ba for suitable elements a� b ∈ R. Zero and 1 are the trivial (orthogonal)
idempotents of any ring. For an idempotent e, e′ = 1− e is the complementary
idempotent. For two idempotents e� f , we denote by �e� f�s the subsemigroup of the
multiplicative monoid of the ring, generated by e and f .

The main results we obtain are the following ones.

Theorem. In the poset �Id�R��≤�, two idempotents e, f have a greatest lower bound
and a least upper bound with inf�e� f� ∈ �e� f�s if and only if e and f are generalized
commuting idempotents.

Proposition. The poset �Id�R��≤� has only generalized commuting idempotents if
and only if all idempotents are central �i.e., Id�R� = B�R��.

2. GENERALIZED COMMUTING IDEMPOTENTS

For the first part of this section, suppose R is a (multiplicatively written)
semigroup. Two idempotents e, f are called generalized commuting idempotents if
there exists a positive integer n such that �ef�n = �fe�n or, �ef�ne = �fe�nf . It is easy
to prove that there is a strict hierarchy for these conditions, namely,

ef = fe �⇒ efe = fef �⇒ · · · �⇒ �ef�n = �fe�n
�∗��⇒ �ef�ne = �fe�nf �⇒ · · · �

For instance, (*) is proved as follows: by left multiplication with e, we first
obtain �ef�n = e�fe�n; then by left multiplication with f , we obtain f�ef�n = �fe�n.
Hence also �ef�ne = e�fe�n = f�ef�n = �fe�nf .

These implications cannot be reversed. As an example, for the first implication:
in the 2× 2 matrix ring over Z, take e = [

1 1
0 0

]
and f = [

1 0
−1 0

]
. Then efe =

fef = 02, the zero matrix (and so e, f are generalized commuting idempotents), but
ef = [

0 0
0 0

] 
= [
1 1
−1 −1

] = fe.
If f ′ = I2 − f = [

0 0
1 1

]
is the complementary idempotent, then e = ef ′ = ef ′e =

�ef ′�2 = · · · and f ′ = f ′e = f ′ef ′ = �f ′e�2 = · · · . Hence e and f ′ are not generalized
commuting idempotents.
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1052 CĂLUGĂREANU

Remarks. 1) More can be proved: if for instance �ef�n = �fe�n, then not only
(as we already saw) �ef�ne = �fe�nf , but �ef�n = �ef�ne = �fe�nf = �fe�n, and all
elements “to the right” are equal.

2) Therefore, using the above sequence, a commuting index can be introduced
for any two idempotents: the least positive integer n, if any, such that �ef�n = �fe�n

or, �ef�ne = �fe�nf .

3) Clearly, all elements above are contained in the subsemigroup of R
generated by e and f , denoted �e� f�s. Actually, since we only consider idempotents,
elements in �e� f�s are of four possible forms: �ef�n, �ef�ne, �fe�n, and �fe�nf , for
some positive integer n.

Proposition 1. Two idempotents e, f are generalized commuting if and only if
�ef�s ∩ �fe�s 
= �.

Proof. The condition is clearly necessary. To check that it is also sufficient,
suppose �ef�n = �fe�m for positive integers n and m. If k = max�n�m�, we show
that �ef�k = �fe�k, and so these are generalized commuting idempotents. Indeed, if
�ef�n = �fe�m, then checking �ef�n = �ef�n+1 = �ef�n+2 = · · · and �fe�m = �fe�m+1 =
�fe�m+2 = · · · will do. Here is a sample: �ef�n+1 = �ef�nef = �fe�mef = �fe�mf =
�ef�nf = �ef�n.

Once again, more can be shown about the intermediate products: �ef�ne =
�fe�me = �fe�m = �ef�n. �

Further, idempotents in a ring R (with identity) are called generalized
commuting whenever they are generalized commuting in the multiplicative monoid
of the ring.

We first prove some technical equalities gathered in the following lemma.

Lemma 2. For any two idempotents e, f in a ring R, the following hold:

a) If s = e+ f − ef − fe+ efe+ fef − · · · + e�fe�n−1 + f�ef�n−1 − �ef�n then es= s
and sf = f ; but

b) se = e+ �fe�n − �ef�ne and fs = f + �fe�n − f�ef�n;
c) (de Morgan) s = 1− ��1− e��1− f�	n, and similarly;
d) e+ f − ef − fe+ efe+ fef − · · · − �ef�n − �fe�n + �ef�ne = 1− ��1− e��1− f�	n

�1− e�.

Proof. We will just mention the induction step �n → n+ 1� in the proof of an
equality which is equivalent to (c), that is,

a = ��1− e��1− f�	n = 1− e− f + ef + fe− · · · + �ef�n

(clearly true for n = 1 or 2�.

��1− e��1− f�	n+1 = �1− e��1− f���1− e��1− f�	n

= a− �1− e�fa = a− �1− e�f�1− s�
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RINGS WITH LATTICES OF IDEMPOTENTS 1053

�b�= a− �1− e��−�fe�n + f�ef�n�

= a+ �fe�n − f�ef�n − e�fe�n + �ef�n+1�

as desired. �

Theorem 3. In �Id�R��≤�, generalized commuting pairs of idempotents have a
greatest lower bound and a least upper bound.

Proof. Case 1. We show that if �ef�n = �fe�n, then for the idempotents e, f , the
greatest lower bound exists and

inf�e� f� = �ef�n = �fe�n�

respectively, the least upper bound exists and

sup�e� f� = e+ f − ef − fe+ efe+ fef − · · · + e�fe�n−1 + f�ef�n−1 − �ef�n�

First note that �ef�n ≤ e holds since e�ef�n = �ef�n is true for any idempotents
and �ef�ne = e�fe�n = e�ef�n = �ef�n, using the hypothesis. Similarly, �fe�n ≤ f and
so, �ef�n = �fe�n is a lower bound for e� f . If a ∈ Id�R� and a ≤ e and a ≤ f , any
product of a with any product of e and f equals a. Hence also a = a�ef�n = �ef�na
and so a ≤ �ef�n, which solves the inf part.

Notice that �ef�n = �fe�n is an idempotent: indeed,

�ef�n�ef�n = e�fe�nf�ef�n−1 = e�ef�nf�ef�n−1 = �ef�n�ef�n−1 = · · · = �ef�n�

As for the sup, one first verifies e ≤ e+ f − ef − fe+ · · · + e�fe�n−1 + f�ef�n−1 −
�ef�n (half is (a) in the previous lemma, the other half needs—see (b)—
the hypothesis �ef�n = �fe�n), respectively, f ≤ e+ f − ef − fe+ · · · + e�fe�n−1 +
f�ef�n−1 − �fe�n (similar). Therefore, (by hypothesis) the common element is an
upper bound for e, f . Finally, if a ∈ Id�R� and e ≤ a and f ≤ a, multiplication of
any sum of products of e,f by a does not change this sum of products. Hence
e+ f − ef − fe+ · · · + e�fe�n−1 + f�ef�n−1 − �ef�n ≤ a. Thus

sup�e� f� = e+ f − ef − fe+ · · · + e�fe�n−1 + f�ef�n−1 − �ef�n�

Denote by s = sup�e� f�. Since e� f ≤ s taking a = s above, multiplication of
any sum of products of e,f by s does not change this sum of products. Therefore,
s2 = s and so s is an idempotent.

Case 2. We show that if �ef�ne = �fe�nf , then for the idempotents e, f , the
greatest lower bound exists and

inf�e� f� = �ef�ne = �fe�nf�

respectively, the least upper bound exists and

sup�e� f� = e+ f − ef − fe+ efe+ fef − · · · − �ef�n − �fe�n + �ef�ne�
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The verifications are analogous. However, now the hypothesis is not
necessary in order to check e�fe�n ≤ e, or �fe�nf ≤ f , respectively, e ≤ e+ f −
ef − fe+ efe+ fef − · · · − �ef�n − �fe�n + �ef�ne, or f ≤ e+ f − ef − fe+ efe+
fef − · · · − �ef�n − �fe�n + �fe�nf . �

A converse of the previous theorem also holds.
Indeed, in a similar vein, some arguments in its proof may be refined and give

the following proposition (we skip the details).

Proposition 4. Let e� f ∈ Id�R�. (a) There exists inf�e� f� = �ef�n if and only
if �ef�n = �ef�ne = �fe�nf . (b) There exists sup�e� f� = e+ f − · · · − �ef�n if and
only if �fe�n = �ef�ne = �fe�nf . A similar statement holds for inf�e� f� = �ef�ne and
sup�e� f� = e+ f − · · · − �ef�n − �fe�n + �ef�ne.

Corollary 5. Let e� f ∈ Id�R�. Then inf�e� f� exists and equals �ef�n, and sup�e� f�
exists and equals e+ f − · · · − �ef�n if and only if �ef�n = �fe�n. A similar statement
holds for inf�e� f� = �ef�ne and sup�e� f� = e+ f − · · · − �ef�n − �fe�n + �ef�ne.

Proposition 6. In the poset �Id�R��≤�, for two idempotents e, f , inf�e� f� = �ef�n

�or �ef�ne� and sup�e� f� = e+ f − · · · − �ef�n �respectively, e+ f − · · · − �ef�n −
�fe�n + �ef�ne�, with suitable positive integers n depending on the idempotents e, f if
and only if e and f are generalized commuting idempotents.

We can finally give the following characterization.

Theorem 7. In the poset �Id�R��≤�, two idempotents e, f have a greatest lower
bound and a least upper bound with inf�e� f� ∈ �e� f�s if and only if the idempotents e
and f are generalized commuting.

Proof. By the previous proposition, the condition is sufficient. To prove it
is also necessary, suppose (we have listed above the only four possibilities),
say, i= inf�e� f� = �ef�n. By the inf definition (and partial order ≤), if =
fi = ie = ei= i. Therefore, �ef�ne = ie = i = fi = f�ef�n, and we have generalized
commutativity. The other three cases are analogous. �

Corollary 8. If idempotents in a ring R commute, then �Id�R��≤� forms a lattice with
respect to inf�e� f� = ef and sup�e� f� = e+ f − ef . More, this is a Boolean algebra.

Corollary 9. Let e and f be orthogonal idempotents in an arbitrary ring. Then there
is inf�e� f� = 0, and there is sup�e� f� = e+ f .

Actually, a direct proof of this last corollary is an easy exercise.

Corollary 10. B�R� = Z�R� ∩ Id�R� forms a Boolean algebra.

It should be also noticed that generalized commutativity of idempotents is not
sufficient for

inf�e� f ′� = 0 ⇐⇒ inf�e� f� = e�

equivalence which holds in Boolean algebras.
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RINGS WITH LATTICES OF IDEMPOTENTS 1055

Passage to the complementary idempotent does not even preserve the
“commuting index” (i.e., �ef�n = �fe�n does not imply �ef ′�n = �f ′e�n).

To check these two last claims, the example already given beginning of this
section can be used.

3. RINGS WITH ONLY GENERALIZED IDEMPOTENTS ARE ABELIAN

It it well-known (and somehow surprising) that if (and only if) idempotents in
a ring R commute, then the ring is Abelian (i.e., all idempotents are central). As we
will see below, even less is sufficient in order to have B�R� = Id�R�.

Now, since generally

e� f ∈ Z�R� �⇒ e� f commute �⇒ e� f generalized commute�

but examples (e.g., our example in the previous section) show that none of these
implications can be reversed, one would expect a ring having only generalized
idempotents to have a lattice of idempotents which should be a genuine
generalization of the Boolean algebra B�R�.

In the next result we show that (unfortunately) it is not.

Proposition 11. For a ring R the following conditions are equivalent:

(a) R is Abelian (i.e., all idempotents are central, or equivalently, B�R� = Id�R�);
(b) in R idempotent and nilpotent elements commute;
(c) in R idempotents commute;
(d) every idempotent e commutes with all the idempotents which are isomorphic to e;
(e) R has only generalized commuting idempotents;
(f) every idempotent e generalized commutes with all the idempotents which are

isomorphic to e.

Proof. Since most of these results are known (see Exercises 12.7 and 22.3A [2]),
we prove only the generalized commuting statement (f) �⇒ (a).

Suppose the idempotent e is not central. Then there is r ∈ R such that er 
= re,
or equivalently, erē 
= 0 or ēre 
= 0. In the first case, consider the idempotent f = e+
erē, which is different from e. It can be checked that ef = f and fe= e (see also
Exercise 21.4 [2]), so these are isomorphic idempotents. Therefore, e= fe = efe =
�fe�2 = · · · and f = ef = fef = �ef�2 = · · · , and e is not generalized commuting
with f .

In the second case, if ēre 
= 0, one deals similarly with the idempotent
g= e+ ēre. �

Remark. For the proof of (c) �⇒ (a), the nilpotent elements erē respectively ēre

(indeed, �erē�2 = �ēre�2 = 0) are used. Even extending the definition of generalized
commutativity to arbitrary elements in a ring (including the nilpotent ones), n = erē

(or ēre) is no more suitable for a “generalized” statement like (c): indeed, 0 = ne =
ene = nen = · · · , so now e and n are generalized commuting.
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