"Everything" lifts modulo nil ideals

Grigore Călugăreanu

January 18, 2021

Let R be a ring and I an ideal of R. For a given ring theoretic property \mathcal{P} , we say that elements with property \mathcal{P} lift modulo I if for every $\overline{a} \in \overline{R} := R/I$ with property \mathcal{P} (in R/I) there exists an element a' with property \mathcal{P} (in R) such that $\overline{a'} = \overline{a}$. Equivalently, $a' \in a + I$ or $a' - a \in I$.

An ideal I is called *nil* if it consists only of nilpotent elements (i.e. $I \subseteq N(R)$).

About some important types of elements in rings, we have the following elementary

Proposition 1 Idempotents, units and nilpotents, all lift modulo nil ideals.

Proof. As for *idempotents*, see **21.28**, p.319 in T. Y. Lam's book (A First Course in Noncommutative Rings).

As for *units*: assume $\overline{a} \in U(\overline{R})$. There exists $\overline{c} \in \overline{R}$ such that $\overline{ac} = \overline{ca} = \overline{1}$ and so $a'c' - 1, c'a' - 1 \in I$, denoting a', c' some representatives in the cosets \overline{a} , \overline{c} respectively. Hence $a'c', c'a' \in 1 + I \subseteq 1 + N(R) \subseteq U(R)$, so a' (and c') are indeed units, as desired.

[The units in 1 + N(R) are called *unipotents*].

As for *nilpotents*: suppose $\overline{a} \in N(\overline{R})$. Then $\overline{a}^m = \overline{0}$ for some positive integer m and so $(a')^m \in I$ for some representative a' in \overline{a} . Since I is nil, $[(a')^m]^n = 0$ for some positive integer n, while a' is indeed nilpotent, as desired.

Remarks. 1) In the above proof for units, we have used the property: if $ab, ba \in U(R)$ implies a, b are units.

We just recall (see T. Y. Lam, Exercises in classical Ring Theory, **Ex.1.4**): If $ab \in U(R)$, a and b may not be units (unless the ring is Dedekind finite). However, (b) if a is left-invertible and not a right 0-divisor, then $a \in U(R)$.

Now if both $ab, ba \in U(R)$, the above conditions are fulfilled $[ba \in U(R)]$ implies a is left invertible and $ab \in U(R)$ implies a is not a right 0-divisor] and $a, b \in U(R)$.

2) When using any of the above liftings modulo nil ideals, it is customarily (in order to simplify the writing) to say: if \overline{a} is idempotent (or unit, or nilpotent) we can suppose a is idempotent (or unit, or nilpotent), respectively.