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Utumi Abelian groups
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Abstract – In a recent paper written by Y. Ibrahim and M. Yousif (Comm. in

Algebra, 2018), the following class of modules is considered: a right R-module M

is called a Utumi module if, whenever A and B are submodules of M with A ∼= B

and A∩B = 0, there exist direct summands K and L of M such that A is essential

in K, B is essential in L and K ⊕ L is a direct summand of M . In this paper, all

the Utumi Z-modules (i.e. Abelian groups) and some special classes of these are

determined. As an application, it is proved that all the pseudo-continuous Abelian

groups are quasi-continuous.
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1. Introduction

There is a two-way connection between Abelian group theory and Module

theory. In one direction, notions and results for Abelian groups are some-

times generalized to modules (see for instance [6]), or, in the opposite di-

rection, when notions and results arise for modules, and examples are given

(more or less only) as Abelian groups, then the characterization of Abelian

groups having these properties may be of interest (for both theories). Our

paper falls in this last direction.

In [7] the following class of modules is considered. A right R-module M

is called a Utumi module (U-module for short) if, whenever A and B are

submodules of M with A ∼= B and A∩B = 0, there exist direct summands

K and L of M such that A is essential in K, B is essential in L and K ⊕L

is a direct summand of M . A useful fact which we use throughout is that

direct summands of U-modules are U-modules (see [7, Proposition 3.2]).

The class of U-modules is a simultaneous and strict generalization

of three fundamental classes of modules; namely, the quasi-continuous,

the square-free, and the automorphism-invariant modules. The paper [7]

includes a large number of examples. All these examples are Z-modules,

that is, Abelian groups.

Therefore, a natural project is to determine all the Utumi Z-modules,

that is, all the Utumi Abelian groups (U-groups for short). This is what we

do in this note.

In the Abelian group case, we record the characterizations of all the

special cases of U-groups listed above, and give another one: we prove that

every pseudo-continuous group is quasi-continuous.

Our main result is the following:

Theorem. Let G be an Abelian group. Then G is a U -group if and only

if G has one of the following forms:

(i) G is divisible (i.e. injective);

(ii) G is a torsion group, all whose primary components are isomorphic to

a direct sum of copies of a cocyclic group (i.e. G is quasi-injective);

(iii) G is a torsion-free group of rank 1 (i.e. any subgroup of Q);

(iv) G is a mixed group of torsion-free rank 1; in that case G = Q ⊕H,

where Q is a quasi-injective torsion group and H is a mixed group of torsion-

free rank 1 such that for all primes p with Tp(H) 6= 0 we have Tp(H) is cyclic

and Qp = 0.
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All the groups we consider are Abelian. For unexplained notions

and results, we refer the reader to Laszlo Fuchs’s treatise on Infinite

Abelian Groups (2015, [5]). To simplify the writing, we shall use the term

homo(co)cyclic, for direct sums of isomorphic (co)cyclic groups. By cocyclic

p-groups we mean groups isomorphic to Z(pn) = Z/pnZ or to the (quasi-

cyclic) Prüfer group Z(p∞).

For a group G, r0(G) and rp(G) denote the torsion-free rank and the

p-rank of G, respectively. The term “component” will be used only for a

“primary component” of some group. For a group G, Gp denotes the p-

component of G and D(G) denotes the maximum divisible subgroup of G.

For a submodule K of a module M , K ⊆ess M means K is essential in M

and K ⊆⊕ M means K is a direct summand of M .

2. The Abelian U-groups

First recall the following

Definitions. An R-module M is said to be quasi-injective if ev-

ery R-homomorphism from any submodule can be extended to an R-

endomorphism of M , is square-free (see [13]) if it contains no non-zero

submodules isomorphic to a square A ⊕ A, and is automorphism-invariant

(auto-invariant for short) (see [10]) if it is invariant under any automor-

phism of its injective hull. It is pseudo-injective if every R-monomorphism

from any submodule can be extended to an R-endomorphism of M . Clearly,

quasi-injective modules are also pseudo-injective.

Next, recall that in [8] it is proved that over a principal ideal domain, all

pseudo-injective modules are quasi-injective, and, that in [4] it was proved

that a module is auto-invariant if and only if it is pseudo-injective.

Finally, recall that a module M is called quasi-continuous if every

submodule ofM is essential in a direct summand ofM and direct sum of two

direct summands of M intersecting trivially is again a direct summand of

M , and continuous if every submodule of M is essential in a direct summand

of M and every submodule of M isomorphic to a direct summand is itself

a direct summand.

It is worth mentioning that the quasi-continuous Abelian groups can

be traced in [5, Proposition 2.12, p. 138] and can be fully characterized

using results in [15, Corollary 3.3]. Namely, an Abelian group G is quasi-

continuous if and only if either G is quasi-injective or, if G = T ⊕K where

T is torsion divisible and K is a rank one torsion-free group (i.e. a proper

subgroup of Q). As for continuous Abelian groups, results in [15, Corollary
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3.3] show that these are precisely the quasi-injective Abelian groups (see

also [1]).

The quasi-injective groups were determined in [9], so we can use the

Theorem 2.1. The following conditions are equivalent.

(i) the group G is pseudo-injective;

(ii) the group G is quasi-injective;

(iii) the group G is auto-invariant;

(iv) the group G is continuous;

(v) G is either injective (i.e. divisible) or is a torsion group with homoco-

cyclic components.

As for the square-free (Abelian) groups, since p-groups or torsion-free

groups of rank at least two cannot be square-free we easily obtain the

following characterization

Theorem 2.2. The square-free groups are:

(i) torsion groups with cocyclic components, or

(ii) rank 1 torsion-free groups, or

(iii) direct sums T ⊕F with torsion square-free T and torsion-free square-

free F , if splitting mixed, or

(iv) groups of torsion-free rank 1 and each p-rank, at most 1, if not splitting

mixed.

The determination of the Abelian U-groups is facilitated by results

obtained in [7] (see Theorem 3.13, Corollary 3.18 and a special case of

Corollary 3.7) and by the fact (proved in [7], Proposition 3.2) that direct

summands of U-modules are U-modules.

The precise statement of Theorem 3.13 from [7] is the following

Theorem 2.3. If M is a U-module, then M = Q⊕ T where

(1) Q is a quasi-injective module,

(2) Q = A⊕B ⊕D, where A ∼= B and D is isomorphic to a summand of

A⊕B,

(3) T is a square-free module,

(4) T is Q-injective, and

(5) Q and T are orthogonal.
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Here a module N is called M -injective if every diagram in the category

Mod-R with exact row

0 → K → M

↓

N

can be extended commutatively by a morphism M → N .

Further, the statement of Corollary 3.18 from [7] is the following

Theorem 2.4. If M is a non-singular right R-module, then M is a U-

module if and only if M = X⊕Y , where X is quasi-injective, Y is square-free,

and X and Y are orthogonal.

Finally, the statement of Corollary 3.7 from [7] is the following

Theorem 2.5. If A ⊕ B is a U-module such that A and B are subiso-

morphic, then A ∼= B and A⊕B is quasi-injective. In particular, A⊕A is a

U-module if and only if A is quasi-injective.

The previous theorems show that in order to find the U-modules we just

have to look at the quasi-injective modules and at the square-free modules,

and direct sums of these, respectively. Fortunately, for Abelian groups this

can be done.

We are now ready to start the determination of the (Abelian) U-groups.

Since already for modules the following implications hold (see [12,

Chapter 2, p. 18] and [7])

Injective ⇒ Quasi-injective ⇒ Continuous ⇒ Quasi-continuous ⇒ U-module

we obtain at once

Proposition 2.6. All the divisible groups are U-groups.

Therefore, arbitrary direct sums of quasicyclic groups (i.e. Z(p∞) for some

prime p) and copies of Q are U-groups. As customarily in Abelian group

theory, one should expect to reduce the study of U-groups (via the divisible

part) to the study of reduced U-groups.

While if G = D(G)⊕R is a U-group it follows that the (reduced) direct

summand R is a U-group (direct summands of U-groups are U-groups), the

converse fails.
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As an example, the (genuine) mixed Z-module G := Q⊕Q⊕Z(p)⊕Z(p),

is not a Utumi-module. This follows as a consequence of the special case of

Theorem 2.5: A⊕ A is a U-module if and only if A is quasi-injective. From

a forthcoming result (see Proposition 2.8), it follows that R = Z(p)⊕ Z(p)

is a U-group, by the above proposition it follows that D(G) = Q ⊕ Q is

a U-group, but, since Q ⊕ Z(p) is not quasi-injective, D(G) ⊕ R is not a

U-group. Notice that r0(D(G)) = 2.

Recall that two modules are orthogonal if these have no nonzero isomor-

phic submodules.

For Abelian groups it is easy to describe which pairs of groups are

orthogonal. We just gather these in the following

Lemma 2.7. Two groups G, H are orthogonal if and only if

(i) G is torsion-free and H is torsion;

(ii) G is mixed and H is torsion, whose components correspond to disjoint

sets of primes;

(iii) G and H are torsion groups, whose components correspond to disjoint

sets of primes.

We infer that (a) any two torsion-free groups are not orthogonal, (b)

any torsion-free group and any (genuine) mixed group are not orthogonal,

(c) any two (genuine) mixed groups are not orthogonal.

As customarily, in order to determine the reduced torsion U-groups we

start with p-groups, for an arbitrary prime p.

Proposition 2.8. A reduced p-group G is a U-group if and only if G is

homocyclic.

Proof. According to Theorem 2.3, G = Q ⊕ T with quasi-injective Q

and square-free T .

By the previous characterizations, T is a cyclic p-group Tp (i.e. ∼= Z(pk)

for k ∈ {1, 2, ..., }), and Q is a homocyclic p-group, that is, a direct sum

of isomorphic cyclic p-groups. In what follows we refer to the conditions in

Theorem 2.3.

Q satisfies condition (2). Since by (5) Q and T are orthogonal and both

have (in their socle) a subgroup isomorphic to Z(p), one must be zero.

Therefore, in order to satisfy (1-3) and (5), G is cyclic or homocyclic. As

for (4), it is readily seen that whenever N = 0 or M = 0, N is trivially M -

injective. Hence, for the (two possible) cases above, (4) is also fulfilled. Since
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every cyclic group is also homocyclic, the statement follows. Conversely, just

recall that the cyclic p-groups are square-free, and the homocyclic p-groups

are (by Theorem 2.1) quasi-injective. �

In what follows we show that a p-group is a U-group only if it is divisible

or reduced. We start with an example.

Lemma 2.9. Z(p)⊕ Z(p∞) is not a U-group.

Proof. The subgroup lattice of Z(p∞) is an infinite bounded chain

0 < 〈c1〉 < 〈c2〉 < ... < 〈cn〉 < ... < Z(p∞) and the subgroup lattice

of Z(p) is a two elements chain. Denote G := Z(p) ⊕ Z(p∞) = H ⊕ K

and H = 〈a〉 = {0, a}, K = 〈c1, c2, ..., cn, ...〉 with pc1 = 0, pc2 = c1, ...,

pcn+1 = cn, ...

The subgroup lattice of G consists of the direct product of the chains,

and the countable many ”diagonals” Dn corresponding to the lattice iso-

morphisms of the ”sections” [0,H] → [〈cn−1〉 , 〈cn〉] (for details see [2] or

[16], p. 35-36).

Notice that the diagonals are cyclic subgroups, namely Dn = 〈a+ cn〉 ∼=
〈cn〉 ∼= Z(pn). Also notice that the subgroupsH⊕〈cn〉 ∼= Z(p)⊕Z(pn) are not

cyclic. It is readily seen that the choice of two isomorphic subgroups A ∼= B

with A ∩B = 0 is possible only for (A,B) ∈ {(H,D1), (H, 〈c1〉), (D1, 〈c1〉)}.

Moreover, the only direct summands of G are H and D1, as complements

of K (two subgroups different from K have not the sum equal to G, and K

is disjoint only from H and D1).

Take the pair (H,D1). Then H ⊆ess K, D1 ⊆ess L for two direct

summands K, L of G, is possible only if H = K and D1 = L. However

K ⊕ L = H ⊕D1 is not a direct summand of G. �

In a similar way, one can show that Z(pk)⊕Z(p∞) is not a U-group, for

any positive integer k.

Proposition 2.10. A p-group is a U-group only if it is divisible or

reduced.

Proof. Suppose G is a p-group which is not divisible nor reduced but

a U-group. Since the divisible part is a direct summand, G = D(G) ⊕ R

for some reduced subgroup R. Since, as direct summand, R is a U-group,

according to Proposition 2.8 (and the structure of divisible p-groups), G

has a direct summand isomorphic to Z(pk) ⊕ Z(p∞), which is a U-group.
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This contradicts the generalization (mentioned above) of the previous

Lemma. �

Next, we need the following easy to foresee

Proposition 2.11. A torsion group is a U-group if and only if all its

primary components are U-groups.

Proof. One way is clear since direct summands of U-groups are U-

groups: the p-components of a torsion U-group are also U-groups.

Conversely, notice that the p-components of any torsion group are fully

invariant direct summands. To simplify the writing, suppose G = Gp ⊕Gq

is the primary decomposition for a group G, with different primes p, q and

suppose both Gp, Gq are U-groups. Let A, B be subgroups of G with A ∼= B

and A∩B = 0. Decompose both A and B into components, say, A = Ap⊕Aq

and B = Bp⊕Bq. Clearly, Ap
∼= Bp and Ap∩Bp = 0 and the same for the q-

components. Since both Gp, Gq are U-groups, there exist direct summands

Kp, Lp of Gp such that Ap ⊆ess Kp, Bp ⊆ess Lp and Kp ⊕ Lp ⊆⊕ Gp and

the same for the q-components. Finally, if K := Kp ⊕Kq and L := Lp ⊕Lq,

it is easy to check A ⊆ess K, B ⊆ess L and K ⊕ L ⊆⊕ G. �

Corollary 2.12. A torsion group is a U-group if and only if it is divisible

or it has homococyclic components.

Proof. Another similar proof (notice that the proof of the previous

lemma is lattice theoretic, dealing with chains of subgroups of cocyclic

groups) shows that Z(qk) ⊕ Z(p∞) is not a U-group, for any different

primes p, q. Therefore, a torsion U-group is divisible or reduced and we

use Proposition 2.10. �

In closing the discussion on torsion U-groups, it is worth mentioning the

following simple result observed by S. Breaz.

Proposition 2.13. Every fully invariant subgroup of a U-group is a U-

group.

Proof. Let H be a fully invariant subgroup of a U-group G, and A ∼= B,

A ∩ B = 0 subgroups of H. There are direct summands K, L of G such

that A ⊆ess K, B ⊆ess L and K ⊕ L is a direct summand of G. Consider

the subgroups H ∩ K, H ∩ L of H and suppose G = K ⊕ K ′. Since H

is fully invariant, H = (H ∩ K) ⊕ (H ∩ K ′) (see [5, Lemma 2.3, p. 51])



Utumi Abelian groups 9

shows that H ∩K (and similarly H ∩L) is a direct summand of H. Clearly,

A ⊆ess H ∩K, B ⊆ess H ∩ L and (H ∩K) ⊕ (H ∩ L) is a direct summand

in H (using again the fact that H is fully invariant). �

Notice that the proof relies only on [5, Lemma 2.3, p. 51], whose proof

extends verbatim to modules. Hence, fully invariant submodules of U-modules

are U-modules, a result which we could not find in [7] (it was not necessary).

Therefore

Corollary 2.14. The torsion subgroup of any U-group is a U-group.

The previous proposition also gives an alternative proof for: the divisible

part of any U-group is a U-group.

Since the non-singular Z-modules are precisely the torsion-free groups,

for the determination of the torsion-free U-groups, we use Theorem 2.4.

Recall that X is torsion-free quasi-injective if and only if X is divisible

(i.e. a direct sum of copies of Q) and Y is torsion-free square-free if and only

if it is of rank 1 (any subgroup of Q). Since the orthogonality condition is

exclusive (Q and any rank 1 torsion-free group have subgroups isomorphic

to Z), we obtain

Proposition 2.15. A torsion-free group G is a U-group if and only if G

is a (finite or infinite) direct sum Q⊕Q⊕ ..., or G is isomorphic to any proper

subgroup of Q.

Corollary 2.16. A reduced torsion-free group is a U-group if and only

if it is isomorphic to a proper subgroup of Q.

As an example, Z is a U-group, but free groups (i.e. direct sums of Z)

of rank at least 2 are not U-groups. That Z is a U-group follows also from

the fact that, being locally cyclic, it has a distributive subgroup lattice and,

more general (see [14], Lemma 4.4), distributive modules are square-free (and

so U-modules).

Finally we characterize the mixed U-groups. First we separate the

mixed groups whose torsion-free rank is at least 2.

Proposition 2.17. If G is a U-group of torsion-free rank at least 2 then

G is divisible.
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Proof. Let G be a U-group with r0(G) ≥ 2. By Theorem 2.3, G = Q⊕T

with quasi-cyclic Q and square-free T . Since these two summands are

orthogonal, both cannot contain infinite order elements, We go into two

cases.

Case 1. Q is torsion (with homococyclic components) and r0(T ) =

r0(G) ≥ 2. This cannot happen since T is square-free T (see Theorem

2.2).

Case 2. Q is divisible with r0(Q) ≥ 2 and T is square-free torsion, that

is, with cocyclic components. If T has finite cocyclic components, this does

not fulfill the condition (4) in Theorem 2.3: T is not Q-injective. Indeed,

this reduces to the easy to check fact that Z(pk) is not Q-injective. So T is

(torsion) divisible, and so is G (together with Q). �

Finally we describe the mixed U-groups of torsion-free rank 1.

Theorem 2.18. A group G of torsion-free rank 1 is a U -group if and only

if G = Q ⊕H, where Q is a quasi-injective torsion group and H is a mixed

group of torsion-free rank 1 such that for all primes p with Tp(H) 6= 0 we

have Tp(H) is cyclic and Qp = 0.

Proof. By Theorem 2.3, G = U ⊕ V with U quasi-injective, V square-

free, and U and V being orthogonal.

Suppose that r0(U) = 1. Then (by Theorem 2.1) U = L ⊕ C where L

is isomorphic to Q and C is a quasi-injective torsion group. Taking H = L

and Q = C⊕V , it follows (by Corollary 2.14) that Q = T (G) is an U-group

and so (by Theorem 2.1) it is quasi-injective. In this case, the condition on

H is trivially satisfied.

Suppose that r0(V ) = 1 and let p be a prime such that Tp(V ) 6= 0.

Notice that, by the orthogonality condition, in this case U is quasi-injective

torsion. Then, since V is square-free (and so U-group), as p-group of p-rank

1, Tp(V ) is cocyclic (according to Proposition 2.10). Since its divisible part

can be included in U , we can choose Tp(V ) being cyclic. Using again the

orthogonality condition, it is easy to see that U cannot have elements of

order p. Hence Tp(U) = 0. It remains to take Q = U ⊕D(V ) and H, any

reduced part of V .

Conversely, suppose that A and B are disjoint subgroups of G such that

A ∼= B. Then A and B must be torsion subgroups. Moreover, since the

p-components Tp(H) are cyclic, it follows that A and B are contained in Q.

Since Q is quasi-injective (and so U-group), it now follows that A and B
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can be embedded as essential subgroups of some direct summands K and

L of G such that K ⊕ L is a direct summand of G. �

Open question. Are pure subgroups of U-groups also U-groups ? As

mentioned above, the torsion part of a U-group is a pure U-subgroup.

3. An application

First we recall some definitions and known results.

A module M is said to satisfy the C1 condition (or CS or extending)

if every submodule of M is essential in a direct summand (equivalently,

each complement submodule is a direct summand). A module M is said to

satisfy the C2 condition, if every submodule isomorphic to a summand of

M is itself a summand of M . A module M satisfies the C3 condition, if the

sum of any two summands of M with zero intersection is a summand of M .

A module M is called (see [3]) a C4-module if, whenever A1 and A2

are submodules of M with M = A1 ⊕ A2 and f : A1 → A2 is an R-

homomorphism with ker f ⊆⊕ A1, we have Imf ⊆⊕ A2.

As already mentioned in Section 2, a module is called continuous if it

satisfies both the C1 and C2 conditions, and is called quasi-continuous if it

satisfies both the C1 and C3 conditions.

A module M is called pseudo-continuous if it is both a C1-module and

a C4-module. It is proved in [7] (Corollary 2.15) that pseudo-continuous

modules are U-modules. Since C3 modules are C4, quasi-continuous modules

are pseudo-continuous.

The characterization of quasi-continuous groups was mentioned in Sec-

tion 2.

For reader’s convenience, we recall the following result

Theorem 3.1. (a) A torsion Abelian group G is C1 if and only if

it is divisible, or it is a sum of cyclic groups, such that for each prime

number p there is a positive integer n = n(p) such that the p-component

Gp ≃ (
⊕

s

Z(pn)) ⊕ (
⊕

t

Z(pn+1)) with (possible zero) cardinals s, t.

(b) A reduced torsion-free Abelian group is C1 if and only if it is homoge-

neous completely decomposable of finite rank.

(c) An Abelian group is C1 if and only if it is torsion C1 (see (a)), or

the direct sum of a torsion-free reduced C1 group (see (b)) and an arbitrary

divisible group.
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In [3], to find an example of a pseudo-continuous module that is not

quasi-continuous was left an open question. The next proposition, which

follows using our results in the previous section, shows that such an Abelian

group example does not exist.

Proposition 3.2. All pseudo-continuous (Abelian) groups are quasi-

continuous.

Proof. From Theorem 3.1 it follows that, being C1, the pseudo-

continuous groups are splitting. Since these are also U-groups, by Theorem

2.18, these are direct sums of quasi-injective groups and rank 1 torsion-free

groups. But (by the characterization before Theorem 2.1) such groups are

indeed quasi-continuous. �

It is worth mentioning that an elaborate example of square-free module

which is not C3 was found by P. P. Nielsen (see [3], Example 2.10 and [14],

Example 6.1). This also works as an example of a C4-module that is not a

C3-module. As for an example of pseudo-continuous module which is not

quasi-continuous (i.e. a C1 + C4 module which is not C3), this seems (so

far) to be an open question (see also Question 4.4.23, [11]).

Acknowledgments. Thanks are due to Simion Breaz for fruitful discussion

on the subject and for simplifying the proof of Theorem 2.18 and to the

referee, whose observations have improved our presentation.
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