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Abstract. The rings whose every element is uniquely clean are completely
characterized in [16]. These rings belong to a larger class of rings for which
every clean element is uniquely clean. The latter is the topic of this article.

1. Introduction

Throughout, rings are associative with identity. An element in a ring is clean

if it is a sum of an idempotent and a unit, strongly clean if it is a sum of an

idempotent and a unit that commute, and uniquely clean if it is uniquely the

sum of an idempotent and a unit. A ring is called clean (resp., uniquely clean)

if every element is clean (resp., uniquely clean). As a special class of clean rings,

uniquely clean rings are completely characterized ([1, 16]). There are several

classes of rings, which naturally include uniquely clean rings, whose structures are

fully understood (see [10, 11, 12]). This paper is devoted to a new generalization

of uniquely clean rings, called CUC rings. Here a ring is called a CUC ring if every

clean element is uniquely clean. The same line of thought is seen in a work of

partially unit-regular rings (rings in which every regular element is unit-regular)

in [4] and a work of RS rings (rings in which every regular element is strongly

regular) in [20].

The paper displays a new picture in which uniquely clean rings fit. In Section

2, basic properties and various examples of CUC rings are presented. In contrast

to uniquely clean rings, CUC rings can occur as polynomial rings. In Section 3,

Key words and phrases. idempotent, unit, clean element, uniquely clean element, abelian
ring, semipotent ring, potent ring, Boolean ring.
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characterizations of semipotent CUC rings are proved, from which known char-

acterizations of uniquely clean rings can be readily obtained. In particular, it is

showed that uniquely clean rings are exactly the potent CUC rings. Section 4

gives a few families of CUC group rings. Section 5 deals with the question of

when every factor ring of a ring is CUC, with an answer for a commutative or

semipotent ring.

For a ring R, we denote by J(R), U(R), idem(R) and nil(R) the Jacobson

radical, the unit group, the set of idempotents and the set of nilpotents of R,

respectively. We write cn(R), scn(R) and ucn(R) for the set of clean elements,

the set of strongly clean elements and the set of uniquely clean elements of R,

respectively. The ring of n × n matrices and the ring of n × n upper triangular

matrices over R are denoted by Mn(R) and Tn(R), respectively. For a subring S

of a ring R, we do not insist that 1S = 1R. An element in a ring is called 2-good

if it is the sum of two units.

2. Examples and basic properties

A ring is called a CUC ring if every clean element is uniquely clean, and a

ring is called a UUC ring if every unit is uniquely clean. Note that the question

of when ucn(R) ⊆ scn(R) holds true, was addressed in [7]. A ring is abelian if

each of its idempotents is central.

Proposition 2.1. [8] The following are equivalent for a ring R:

(1) R is CUC.

(2) scn(R) ⊆ ucn(R).

(3) R is abelian and UUC.

(4) R is abelian and (U(R) + U(R)) ∩ idem(R) = 0.

Proof. (1) ⇔ (3) ⇔ (4). The equivalences are proved in [8, Proposition 27].

(1) ⇒ (2). The implication is obvious.



3

(2) ⇒ (3). Every unit of R is strongly clean, so is uniquely clean by (2). Hence

R is UUC. For e2 = e ∈ R, e = (1−e)+(2e−1) is a strongly clean decomposition.

So e is uniquely clean by (2), and hence is central by [12, Lemma 2.4]. Hence R

is abelian. �

One can easily check that the ring T2(Z2) is UUC but not abelian. For any

non-trivial ring R and any n ≥ 2, Tn(R) and Mn(R) are not CUC.

Examples 2.2. (1) An indecomposable ring R is CUC if and only if R has

the trivial idempotents only and 1 is not 2-good. In particular, Z, F2[t]

and F2[[t]] are CUC.

(2) Suppose that R has the trivial idempotents only. Then R is UUC if and

only if 1 is not 2-good.

An indecomposable UUC ring may contain non-trivial idempotents; for exam-

ple, T2(Z2). A subring of a uniquely clean ring need not be uniquely clean; for

instance, Z2[[t]] is uniquely clean but Z2[t] is not. This is in contrast to Proposi-

tion 2.3(1).

Proposition 2.3. (1) Let S be a subring of a ring R. If R is CUC (resp.,

UUC), then so is S.

(2) Let R =
∏

Ri be a direct product of rings {Ri}. Then R is CUC (resp.,

UUC) if and only if so are Ri for all i.

Proof. In view of Proposition 2.1, it suffices to show the UUC case.

(1) Let u = v + e where u, v ∈ U(S) and e ∈ idem(S). Then u− (1R − 1S) =

[v− (1R − 1S)] + e with u− (1R − 1S), v− (1R − 1S) ∈ U(R). Since R is UUC, it

follows that u = v and e = 0. So S is UUC.

(2) The necessity is by (1). For the sufficiency, let (ui) = (vi) + (ei) where

(ei) ∈ idem(R) and (ui), (vi) ∈ U(R). Then, for each i, ui = vi + ei with

ui, vi ∈ U(Ri) and with ei ∈ idem(Ri). Since Ri is UUC, it follows that ui = vi

and ei = 0. So (ui) = (vi) and (ei) = 0. Hence R is UUC. �
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Corollary 2.4. Any subdirect product of CUC (resp., UUC) rings is CUC (resp.,

UUC).

A ring is called I-finite if it contains no infinite orthogonal family of idempo-

tents.

Corollary 2.5. Let R be an I-finite ring. Then R is CUC if and only if R =
∏n

i=1
Ri where Ri has the trivial idempotents only and 1 is not 2-good in Ri for

all i.

Proof. The sufficiency follows from Examples 2.2 and Proposition 2.3. For the

necessity, being I-finite, R as a right R-module has the ACC on direct summands

(see [15, Lemma B.6, page 255]), so R =
∏n

i=1
Ri where each Ri is indecompos-

able. By Proposition 2.3, Ri is CUC, so Ri has the trivial idempotents only and

1 is not 2-good in Ri by Examples 2.2. �

A ring R is called semiperfect if R/J(R) is semisimple and idempotents lift

modulo J(R). It is known that every semiperfect ring is I-finite.

Corollary 2.6. Let R be a semiperfect ring. Then R is CUC if and only if

R =
∏n

i=1
Ri where Ri/J(Ri) ∼= Z2 for all i.

For a subring C of a ring D, the set R[D,C] := {(d1, . . . , dn, c, c, . . .) : di ∈

D, c ∈ C, n ≥ 1}, with addition and multiplication defined componentwise, is a

ring.

Corollary 2.7. The ring R[D,C] is CUC (resp., UUC) if and only if so is D.

Lemma 2.8. Let I ⊆ J(R) be an ideal of R such that idempotents lift modulo I.

The following hold:

(1) R is abelian if and only if R/I is abelian and idempotents lift uniquely

modulo I.

(2) R is UUC if and only if R/I is UUC.



5

Proof. (1)(⇒). If e ∈ idem(R/I), then we can assume that e ∈ idem(R). So e

is central and so is e. Assume that e − f ∈ I where e, f ∈ idem(R). Since e, f

are central, (e− f)3 = e − f . It follows from e − f ∈ I that then e = f . Hence

idempotents lift uniquely modulo I.

(1)(⇐). Let e ∈ idem(R). Then e = (1− e)+(2e−1), a sum of an idempotent

and a unit. Assume that e = f + u where f 2 = f and u ∈ U(R). Then

e = f + u = 1− e + 2e− 1, which are two clean decompositions. Since e is

central, it is uniquely clean by [12, Lemma 2.4]. It follows that f = 1− e. Hence

f = 1− e. So e is uniquely clean and hence central by [12, Lemma 2.4].

(2)(⇒). Assume that u = e + v where u, v ∈ U(R/I) and e ∈ idem(R/I).

We can assume that e2 = e, and so u = e + (v + j) for some j ∈ I. Note that

u, v ∈ U(R) and j ∈ J(R), so u = e + (v + j) is a clean decomposition. Since R

is UUC, e = 0, so e = 0. Hence R/I is UUC.

(2)(⇐). Assume that u = e + v where u, v ∈ U(R) and e ∈ idem(R). Then

u = e+ v with u, v ∈ U(R/I) and e ∈ idem(R/I). It follows that e = 0, so e ∈ I.

Thus e = 0, and hence R is UUC. �

Corollary 2.9. Let I ⊆ J(R) be an ideal of R such that idempotents lift modulo

I. The following are equivalent:

(1) R is CUC.

(2) R/I is CUC and idempotents lift uniquely modulo I.

(3) R is abelian and R/I is CUC.

Proof. It is by Proposition 2.1 and Lemma 2.8. �

Remark 2.10. (1) The proof of “(2)(⇐)” of Lemma 2.8 shows that if R/I

is UUC and I ⊆ J(R), then R is UUC.

(2) It follows from (1) and Proposition 2.1 that if R is abelian and R/I is

CUC where I ⊆ J(R), then R is CUC.

Since idempotents lift modulo any nil ideal, Lemma 2.8 and Corollary 2.9 have

the following immediate consequences.
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Corollary 2.11. Let I be a nil ideal of R. Then

(1) R is UUC if and only if R/I is UUC.

(2) R is CUC if and only if R is abelian and R/I is CUC.

Proposition 2.12. Let R = S + I, where S is a subring of R with 1R ∈ S and

I is an ideal of R, such that S ∩ I = 0.

(1) R is UUC if and only if (U(R) + U(R)) ∩ idem(I) = 0 and S is UUC.

(2) R is CUC if and only if R is abelian, S is UUC, and eIe is UUC for all

e2 = e ∈ I.

Proof. (1) For the necessity, R UUC implies that S is UUC by Proposition 2.3,

and also that (U(R) + U(R)) ∩ idem(I) = 0. For the sufficiency, let u = e + v

where u, v ∈ U(R) and e ∈ idem(R). Write u = us + ui, e = es + ei, v = vs + vi

where us, es, vs ∈ S and ui, ei, vi ∈ I. It follows that us = es + vs where us, vs ∈

U(S) and es ∈ idem(S). Since S is UUC, we have es = 0, so e ∈ I. From

(U(R) + U(R)) ∩ idem(I) = 0, it follows that e = 0.

(2) For the necessity, R CUC implies that S and eIe are CUC by Proposition

2.3, and that R is abelian by Proposition 2.1. For the sufficiency, it suffices to

show that (U(R) +U(R)) ∩ idem(I) = 0 because of (1) and Proposition 2.1. Let

u = e+v where u, v ∈ U(R) and e ∈ idem(I). Since e is central in R, eu = e+ev

with eu, ev ∈ U(eIe). Since eIe is UUC, it follows that e = 0. �

The unique cleanness of a trivial extension and an ideal-extension has been

discussed in [9, 16, 17]. Here we consider when the two classical ring constructions

are CUC (resp., UUC).

For a bimodule V over a ring A, the trivial extension A ∝ V of A by V is

defined to be the additive abelian group A ∝ V = A ⊕ V with multiplication

(a, v)(b, w) = (ab, aw + vb). For a subset B of A and a subset W of V , we write

B ∝ W for {(b, w) ∈ A ∝ V : b ∈ B and w ∈ W}.
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Corollary 2.13. Let A,B be rings, V a bimodule over A, M an (A,B)-bimodule

and k ≥ 1.

(1) A is CUC (resp., UUC) if and only if A[[t]] is CUC (resp., UUC).

(2) A is CUC (resp., UUC) if and only if A[[t]]/(tk) is CUC (resp., UUC).

(3) A ∝ V is UUC if and only if A is UUC.

(4) A ∝ V is CUC if and only if A is CUC and ev = ve for all e ∈ idem(A)

and v ∈ V .

(5) The formal triangular matrix ring

(

A M
0 B

)

is UUC if and only if A,B

are UUC.

Proof. (1) Let R = A[[t]], S = A and I = tR. Since idem(I) = 0, (1) follows

from Proposition 2.12.

(2) Let R = A[[t]]/(tk), S = A and I = tR. Since idem(I) = 0, (2) follows

from Proposition 2.12.

(3) and (4) Let R = A ∝ V , S = A ∝ 0 and I = 0 ∝ V . Since idem(I) = 0,

(3) and (4) follow from Proposition 2.12.

(5) Let R =

(

A M
0 B

)

, S =

(

A 0
0 B

)

and I =

(

0 M
0 0

)

. Since idem(I) = 0,

(5) follows from Proposition 2.12. �

Corollary 2.14. The following hold:

(1) Let R be a ring and T be a subring of R[[t]] with R ⊆ T ⊆ R[[t]]] (e.g.,

T = R[t]). Then R is CUC (resp., UUC) if and only if so is T .

(2) The ring Tn(R) is UUC if and only if R is UUC.

Proof. (1) It follows from Corollary 2.13(1) and Proposition 2.3(1).

(2) It follows from Corollary 2.13(5). �

One easily sees that a proper matrix ring can not be UUC.

Let A be a ring and let V be an (A,A)-bimodule which is a non-unital ring

in which (vw)a = v(wa), (va)w = v(aw) and (av)w = a(vw) hold for all v, w ∈

V and a ∈ A. Then the ideal-extension I(A;V ) of A by V is defined to be
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the additive abelian group I(A;V ) = A ⊕ V with multiplication (a, v)(b, w) =

(ab, aw + vb+ vw). Note that if S is a ring and S = A⊕ V where A is a subring

and V ⊳ S, then S ∼= I(A;V ).

Corollary 2.15. The ring S := I(A, V ) is CUC if and only if S is abelian, A is

UUC, and eV e is UUC for all e2 = e ∈ V .

Proof. Let R = I(A, V ), S = (A, 0), and I = (0, V ). The claim follows from

Proposition 2.12(2). �

3. Semipotent CUC rings

A ring R is called semipotent if every one-sided ideal not contained in J(R) con-

tains a nonzero idempotent. A semipotent ring R is called potent if idempotents

lift modulo J(R). Semipotent rings and potent rings were also named as I0-rings

and I-rings, respectively, by Nicholson in [14]. Semipotent CUC rings form a

natural class of rings as characterized below, from which new characterizations

of uniquely clean rings are obtained. The center of a ring R is denoted by C(R).

Following [7, Definition 3.4], we let ucn0(R) = {e+ j : e2 = e ∈ C(R), j ∈ J(R)}.

Theorem 3.1. Let R be a semipotent ring. The following are equivalent:

(1) R/J(R) is UUC.

(2) R/J(R) is Boolean.

(3) U(R) = 1 + J(R).

(4) U(R) ⊆ ucn0(R).

(5) For each a ∈ U(R), there exists a unique e2 = e such that a− e ∈ J(R).

(6) For each a ∈ U(R), there exists e2 = e such that a− e ∈ J(R).

Proof. (1) ⇒ (2). Since R is semipotent, R := R/J(R) is semipotent (indeed,

potent). We show that R is reduced. Assume that x2 = 0 where 0 6= x ∈ R.

Then, by [13, Theorem 2.1] (or see [19, Remarks 15.5(3), page 134]), there exists

0 6= y2 = y ∈ R such that yRy ∼= M2(S) for a non-trivial ring S. But one
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easily sees that M2(S) is not UUC:

(

1 1
0 1

)

=

(

1 0
−1 0

)

+

(

0 1
1 1

)

. Thus, yRy

is not UUC. This is a contradiction to Proposition 2.3(1). Hence R is reduced

and hence abelian
(

since for any y2 = y ∈ R, yR(1− y) = 0 and (1− y)Ry = 0,

so yx = yxy = xy for all x ∈ R
)

. So R is CUC by Proposition 2.1. Assume that

x − x2 6= 0 in R. Since R is semipotent, there exists 0 6= y2 = y ∈ (x − x2)R.

So y = (x − x2)z for some z ∈ R. Since y is central, y = yx · y(1 − x) · yz, so

yx, y(1−x) ∈ U(yR). Since yx+ y(1−x) = y, it follows from Proposition 2.1(4)

that yRy is not CUC. This is a contradiction by Proposition 2.3(1). Hence R is

Boolean.

(2) ⇒ (3) ⇒ (4) and (5) ⇒ (6). These implications are clear.

(4) ⇒ (5). By (4), for each u ∈ U(R), u − e ∈ J(R) where e is a central

idempotent. Assume that u−f ∈ J(R) for an idempotent f . Thus, e−f ∈ J(R).

Since e is central, (e− f)3 = e− f . It follows that f = e.

(6) ⇒ (1). Let u ∈ U(R). Then u = 0+u is clean. Assume that u = e+v where

e2 = e and v ∈ U(R). By (6), u = f + j1 and v = g + j2, where f, g ∈ idem(R)

and j1, j2 ∈ J(R). Then f = u − j1 ∈ U(R), so f = 1. Similarly, g = 1. Thus,

1 = e+ 1. So, e = 0 and hence u ∈ ucn(R). �

By Lemma 2.8, for a potent ring R, R is UUC if and only if R/J(R) is UUC;

so in this case, Theorem 3.1(1) can be replaced by “R is UUC”.

The ring T2(Z2) is semipotent and UUC, but not CUC. Indeed, semipotent

CUC rings can be characterized as follows.

Theorem 3.2. Let R be a semipotent ring. The following are equivalent:

(1) R is CUC.

(2) R is abelian and R/J(R) is Boolean.

(3) R is abelian and U(R) = 1 + J(R).

(4) cn(R) = ucn0(R).

(5) For each a ∈ cn(R), there exists a unique e2 = e such that a− e ∈ J(R).
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Proof. (1) ⇒ (2). By Proposition 2.1, R is abelian. To show that R/J(R) is

Boolean, we repeat the argument as in proving “(1) ⇒ (2)” of Theorem 3.1.

Assume that a − a2 6= 0 in R. Since R is semipotent, there exists 0 6= e2 = e ∈

(a−a2)R. So e = (a−a2)b for some b ∈ R. Since e is central, e = ea ·e(1−a) ·eb,

so ea, e(1 − a) ∈ U(eR). Since ea + e(1 − a) = e, it follows from Proposition

2.1(4) that eRe is not CUC. This is a contradiction by Proposition 2.3(1). Hence

R/J(R) is Boolean.

(2) ⇔ (3). The equivalences follow from Theorem 3.1.

(2) + (3) ⇒ (4). Since R/J(R) is Boolean, we have 2 ∈ J(R). Let a = e + u

where e2 = e and u ∈ U(R). Then, by (3), u = 1 + j where j ∈ J(R). So

a = e + (1 + j) = (1− e) + (j + 2e) where 1− e ∈ idem(R) and j + 2e ∈ J(R).

(4) ⇒ (1). By [7, Lemma 3.5], ucn0(R) ⊆ ucn(R). From this and (4) it follows

that cn(R) = ucn(R).

(4) ⇒ (5). By (4), for each a ∈ cn(R), a − e ∈ J(R) where e is a central

idempotent. Assume that a−f ∈ J(R) for an idempotent f . Then e−f ∈ J(R).

Since e is central, (e− f)3 = e− f . It follows that f = e.

(5) ⇒ (4). First we show that nil(R) ⊆ J(R). Let a ∈ nil(R). Since a =

1+ (a− 1) ∈ cn(R), a = e+ j where e2 = e and j ∈ J(R) by (5). So, in R/J(R),

a = e, implying that e = 0. So e = 0 and hence a ∈ J(R). Now we show that R

is abelian. For e ∈ idem(R) and x ∈ R, e = e+ 0 = [e− ex(1− e)] + ex(1− e) =

[e− (1− e)xe] + (1− e)xe where e− ex(1− e), e− (1− e)xe are idempotents and

ex(1 − e), (1 − e)xe are in J(R). It follows from (5), ex(1 − e) = (1 − e)xe = 0,

so ex = xe. �

The assumption that R is semipotent in Theorem 3.2 is not superfluous. In-

deed, Z is CUC. But U(Z) = {−1, 1}, 1 + J(Z) = {1}, cn(Z) = {−1, 0, 1, 2} and

ucn0(Z) = {0, 1}. So U(Z) 6= 1 + J(Z) and cn(Z) 6= ucn0(Z).

Corollary 3.3. A (von Neumann) regular ring is UUC if and only if it is Boolean.

Corollary 3.4. A ring R is uniquely clean if and only if R = ucn0(R).
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A ring is uniquely clean if and only if it is clean and CUC. The following result

is a bit surprising.

Theorem 3.5. A ring is uniquely clean if and only if it is potent and CUC.

Proof. The necessity is clear. For the sufficiency, let R be potent and CUC.

It remains to show that R is clean. By Theorem 3.2, R/J(R) is clean (being

Boolean). As idempotents lift modulo J(R), R is clean by [5, Proposition 6]. �

Since uniquely clean rings are just clean CUC rings, known characterizations

of uniquely clean rings in [16, Theorem 20] follow from Theorem 3.2.

By [17, Lemma 24], R/J(R) is Boolean and idempotents lift modulo J(R) if

and only if for each a ∈ R, there exists e2 = e such that a − e ∈ J(R); such a

ring R is called semiboolean.

Corollary 3.6. A ring is semiboolean if and only if it is potent and UUC.

Proof. It follows from [17, Lemma 24] and the remark following Theorem 3.1. �

A ring R is said to be left quasi-duo (resp., right quasi-duo) if every maximal

left ideal (resp., maximal right ideal) of R is an ideal. Uniquely clean rings are

left and right quasi-duo [16, Proposition 23]. Indeed,

Corollary 3.7. Every potent, UUC ring is left and right quasi-duo.

Proof. We show that R/J(R) being Boolean implies that R is left and right quasi-

duo. Since R/J(R) is commutative, each a is central in R/J(R), so aR+J(R) =

Ra+ J(R). Let I be a maximal right ideal I of R. If a ∈ Rr I, I + aR = R, so

1 = x+ab where x ∈ I and b ∈ R. Since R/J(R) is Boolean, j := a−a2 ∈ J(R).

So a = a(x+ ab) = ax+ a2b = ax+ (a− j)b = ax+ ab− jb = 1+ (ax− jb− x) ∈

1 + (Rx + J(R)) + I ⊆ 1 + (xR + J(R)) + I = 1 + I. We have proved that

R = I ∪ (1 + I). It follows that I is a left ideal. �
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4. Group rings

In [3], the question of when a group ring is uniquely clean is addressed and the

following results are obtained: If the group ring RG is uniquely clean, then R is

uniquely clean and G is a 2-group; the converse holds if G is locally finite. In

this section, we present some sufficient conditions for a group ring to be CUC.

The ring homomorphism ǫ : RG → R, Σrgg 7→ Σrg, is called the augmentation

map, and the kernel ker(ǫ) is called the augmentation ideal of RG and is denoted

by △(RG). Note that △(RG) is the ideal of RG generated by {1− g : g ∈ G}.

Lemma 4.1. Suppose that every idempotent of RG is contained in R. Then RG

is CUC (resp., UUC) if and only if so is R.

Proof. The assumption indicates that RG is abelian if and only if R is abelian.

Thus, we only need to verify the UUC case.

The necessity is by Proposition 2.3. For the sufficiency, assume that u = v+ e

where u, v are units in RG and e2 = e ∈ RG. Then ǫ(u) = ǫ(v) + e, where

ǫ(u), ǫ(v) ∈ U(R) and e ∈ idem(R). Since R is UUC, it follows that e = 0. So

RG is UUC. �

Proposition 4.2. The integral group ring of an arbitrary group G is CUC.

Proof. By [18, Corollary 7.2.4], ZG contains only trivial idempotents. Since Z is

CUC, ZG is CUC by Lemma 4.1. �

Proposition 4.3. Let R be a ring and G be a torsion-free abelian group. Then

RG is CUC if and only if R is CUC.

Proof. We only need to show the sufficiency. Assume that R is CUC. To show

that RG is CUC, we can assume that G is finitely generated. Then there exists

n ≥ 1 such that G ∼= G1 × G2 × · · · × Gn where Gi
∼= C

∞
, the infinite cyclic

group, for i = 1, . . . , n. Since RG ∼= (· · · ((RG1)G2) · · · )Gn, it suffices to show

that RC
∞
is CUC. By Proposition 2.1, R is abelian, so all idempotents of R[t, t−1]
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are contained in R by [6, Theorem 5]. Since R[t, t−1] ∼= RC
∞
, we deduce that the

idempotents of RC
∞

are contained in R. It follows from Lemma 4.1 that RC
∞

is CUC. �

Proposition 4.4. Let G be a locally finite group.

(1) If R is a potent ring, then RG is UUC if and only if R is UUC and G is

a 2-group.

(2) If R is a semipotent ring, then RG is CUC if and only if R is CUC and

G is a 2-group.

Proof. (1)(⇒). By Proposition 2.3, R is UUC. Assume that G is not a 2-group.

Then G contains an element g of prime order p > 2. As a subring of RG, R〈g〉

is UUC. Since R is potent and UUC, R/J(R) is Boolean, so p ∈ U(R). Since

tp−1 + tp−2 + · · · t + 1 = (t − 1)[tp−2 + 2tp−3 + · · · + (p − 2)t + (p − 1)] + p,

it follows that (t − 1) + (tp−1 + tp−2 + · · · + t + 1) = R[t] and hence, R〈g〉 ∼=

R[t]/(tp − 1) ∼= R[t]/(t− 1)⊕R[t]/(tp−1 + tp−2+ · · ·+ t+1). By Proposition 2.3,

S := R[t]/(tp−1+tp−2+ · · ·+t+1) is UUC. In S, (t2+t)[tp−3+tp−5+ · · ·+t2+1] =

tp−1 + tp−2 + · · · + t = −1 ∈ U(S), so t, t + 1 ∈ U(S). But (t + 1) + (−t) = 1,

contradicting that S is UUC. So G is a 2-group.

(1)(⇐). Assume that u = v + e where u, v ∈ U(RG) and e =
∑

egg ∈

idem(RG). Then ǫ(u) = ǫ(v)+ ǫ(e), where ǫ(u), ǫ(v) ∈ U(R) and ǫ(e) ∈ idem(R).

Since R is UUC, ǫ(e) = 0, so e =
∑

egg −
∑

eg =
∑

eg(g − 1) ∈ △(RG). But,

by [21, Lemma 2], △(RG) ⊆ J(RG), so e ∈ J(RG). It follows that e = 0. So

RG is UUC.

(2)(⇒). By Proposition 2.3, R is CUC. Since R is semipotent, R/J(R) is

Boolean by Theorem 3.2. The proof of “(1)(⇒)” clearly indicates that R CUC

and R/J(R) Boolean implies that G is a 2-group.

(2)(⇐). Since R is semipotent and CUC, R is abelian and R/J(R) is Boolean

by Theorem 3.2. So 2 ∈ J(R). By [3, Lemma 11], the idempotents of RG are

contained in R. Hence, by Lemma 4.1, RG is CUC. �
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5. All factors are CUC

Factor rings of uniquely clean rings are uniquely clean [16]. But factor rings

of CUC rings need not be UUC: Z is CUC but Zpk is not UUC for any prime

p > 2 and any integer k ≥ 1. The ring R in the next example is a CUC ring but

idempotents do not lift modulo J(R) and R/J(R) is not UUC.

Example 5.1. Let R = {
m

n
∈ Q : gcd(n, 6) = 1 (

m

n
in lowest term)}. One easily

sees that 1 is not 2-good in R, so R is CUC by Examples 2.2(1). It is known

that J(R) = 2R ∩ 3R and idempotents do not lift modulo J(R) (see [2, Exercise

4, page 312]). Moreover, R/J(R) ∼= Z2 × Z3, which is not UUC (since Z3 is not

UUC).

It is noteworthy to characterize the ring whose every factor is CUC (resp.,

UUC). This question has an answer for commutative rings and semipotent rings.

Proposition 5.2. If R/J(R) is Boolean, then every factor of R is UUC.

Proof. For any ideal I of R, write J(R/I) = K/I where K is an ideal of R

with J(R) ⊆ K. So (R/I)/J(R/I) ∼= R/K is an image of R/J(R). It follows

that (R/I)/J(R/I) is Boolean, and hence is UUC. So R/I is UUC by Remark

2.10. �

Proposition 5.3. Let R be a commutative ring. The following are equivalent:

(1) Every factor of R is CUC.

(2) Every factor of R is UUC.

(3) R/J(R) is Boolean.

Proof. (1) ⇒ (3). A commutative primitive CUC ring is a field that is CUC, so

it is Z2 by Corollary 2.6. Hence, R/J(R) is a subdirect product of Z2’s, so it is

Boolean.

(3) ⇒ (2). This is by Proposition 5.2.

(2) ⇒ (1). Since R is commutative, every factor of R is commutative and the

implication follows from Proposition 2.1. �
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Proposition 5.4. Let R be a semipotent ring.

(1) Every factor of R is UUC if and only if R/J(R) is Boolean.

(2) Every factor of R is CUC if and only if ax − xa ∈ R(a − a2)R for all

a, x ∈ R and R/J(R) is Boolean.

Proof. (1) The sufficiency is by Proposition 5.2. For the necessity, R/J(R) is

UUC (being a factor of R) and hence is Boolean by Theorem 3.1.

(2) Note that every factor of R is abelian if and only if ax− xa ∈ R(a− a2)R

for all a, x ∈ R. Indeed, to see the necessity, for a ∈ R, a is an idempotent in

R/R(a − a2)R, so is central. Hence, ax − xa ∈ R(a − a2)R for all x ∈ R. To

see the sufficiency, if a + I is an idempotent of R/I where I is an ideal I of R,

then a2 − a ∈ I, so R(a− a2)R ⊆ I. Thus, ax− xa ∈ I for all x ∈ R, so a+ I is

central in R/I. Hence R/I is abelian. Now (2) follows from the above note, (1)

and Proposition 2.1. �

We conclude with

Question 5.5. Is the converse of Proposition 5.2 true?
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