A prime connected ring

George M. Bergman, Victor Camillo, Pace P. Nielsen, Janez Ster

March 11, 2024

According to Paul Cohn, the following **example** was suggested by W. S. Martindale (conversation) and appears in [6] (1973).

Cohn Let k be a field and R the k-algebra generated by x and y with the single defining relation $x^2 = 0$. Using free ring techniques we prove that the set of left zero-divisors of R is Rx. There is a unique involution fixing x, y and this makes R into a prime ring with involution whose symmetric zero-divisors are nilpotent.

R is prime (and so also semiprime), since for any two nonzero elements $r, s \in R$ we have $rys \neq 0$.

The important subsets of R are summarized in [8].

Lemma 3.18. Let F be a field and $R = F \langle x, y : x^2 = 0 \rangle$. The following hold:

(1) If ab = 0 for some nonzero $a, b \in R$ then $a \in Rx$ and $b \in xR$. In particular, the set of nilpotent elements of R is precisely $Rx \cap xR = Fx + xRx$.

(2) The idempotents of R are trivial, so $idem(R) = \{0, 1\}$.

(3) The ring R is directly finite.

(4) Units in R are exactly the elements of the form $\mu + a$ where $\mu \in F \setminus \{0\}$ and $a \in Rx \cap xR$. In particular, $U(R) + Fx \subseteq U(R)$, and $1 - yx \notin U(R)$.

Proof. (1) is found in [[5], **Example 9.3** - too long to reproduce here].

(2): If e is a nontrivial idempotent in R then e is both a left and a right zero divisor, so that $e \in Rx \cap xR$ by (1). Hence e is a nilpotent and thus e = 0, a contradiction. (Alternatively, this follows by an easy minimal degree argument - see below.)

(3) follows from (2) since ab = 1 always implies that ba is a nonzero idempotent (when $1 \neq 0$).

(4): Clearly $(F \setminus \{0\}) + (Rx \cap xR) \subseteq U(R)$, so it suffices to prove the other inclusion. Let $u \in U(R)$. We may write $u = \mu + u_1 + u_2 + u_3 + u_4$ with $\mu \in F$, $u_1 \in Rx \cap xR$, $u_2 \in Rx \cap yR$, $u_3 \in Ry \cap xR$ and $u_4 \in Ry \cap yR$. Clearly, $\mu \neq 0$. We need to prove that $u_2 = u_3 = u_4 = 0$.

Let $v := u - 1 = \mu + v_1 + v_2 + v_3 + v_4$, with $\mu \in F$, $v_1 \in Rx \cap xR$, $v_2 \in Rx \cap yR$, $v_3 \in Ry \cap xR$, and $v_4 \in Ry \cap yR$. We have $xu \cdot vx = 0$ and $xu, vx \neq 0$, so that (1) yields $xu \in Rx$. This gives $xu_4 \in Rx$, so that $u_4 = 0$. Similarly, $v_4 = 0$.

Suppose that $u_2 \neq 0$ and $v_2 \neq 0$. Taking any monomial p in u_2 of the largest degree, and any monomial q in v_2 of the largest degree, we see that the monomial pq cannot cancel with any other monomial in the product uv, so that $uv \neq 1$, which is a contradiction. Thus $u_2 \neq 0$ forces $v_2 = 0$.

Similarly, $u_3 \neq 0$ forces $v_3 = 0$. Therefore, if both $u_2, u_3 \neq 0$ 0 then $v = \nu + v_1$, which gives $u = v^{-1} = \nu^{-1} - \nu^{-2}v_1$, a contradiction. Hence $u_2 = 0$ or $u_3 = 0$; we may assume by symmetry that $u_3 = 0$.

Finally, suppose that $u_2 \neq 0$, so that $v_2 = 0$. Then $x = xvu = x(\nu + v_1 + v_3)(\mu + u_1 + u_2) = x(\mu + u_1 + u_2) = \mu\nu x + \nu xu_2$. Hence $xu_2 \in Fx$, which is again a contradiction. Thus $u_2 = 0$, which completes the proof (alternatively, see also (**iii**) below).

(2) We show (Bergman) that R is connected (i.e., has only trivial idempotents).

Note that R is graded over the natural numbers by total degree in x and y, and that its residue field (quotient by the ideal of elements of positive degree) is k. This implies that the only idempotents are 0 and 1.

To see this, let $I \subset R$ be the ideal of elements of positive degree. Then $R/I \cong k$, so for every idempotent e of R, the image of e in R/I is an idempotent of k, i.e., 0 or 1.

Replacing e by 1 - e if its image is 1, we see that it suffices to show that the only idempotent element in I is 0. And indeed, since I is graded by the positive integers, for any idempotent e we have $\deg(e) = \deg(e^2) \ge 2 \deg(e)$, so $\deg(e) = \infty$, i.e., e = 0.

This example was used (at least):

(i) Initially in [2], after observing that local rings with nilpotent maximal ideals and residue field \mathbb{F}_2 are UU, as an

example of a ring which has neither of these properties but is UU. The \mathbb{F}_2 -algebra presented by two generators x, y and one relation $x^2 = 0$. It has only units of the form 1 + xax (with nilpotent xax).

(ii) This example was ceded as

Example 2.5 [7] If R is a commutative UU-ring, we have observed in (3) above that rad(R) = nil(R). However, if R is a general UU-ring, $rad(R) \subseteq nil(R)$ may be a strict inclusion.

Such a UU-ring R, constructed by G. Bergman, is presented here with his kind permission. Let R be the \mathbb{F}_2 -algebra generated by x, y with the single relation $x^2 = 0$. Using his result on coproducts from [[1] Corollary 2.16], Bergman showed that $U(R) = 1 + \mathbb{F}_2 x + xRx$. Since $(\mathbb{F}_2 x + xRx)^2 = 0$, we have $\mathbb{F}_2 x + xRx \subseteq nil(R)$, so R is a UU-ring. For any nonzero $r \in R$, it is easy to see that $1 + yry \notin 1 + \mathbb{F}_2 x + xRx$.

Therefore, $rad(R) = \{0\}$, which is properly contained in the set nil(R).

$$\mathbf{as}$$

(iii) an **example** (see [4]) of a prime ring (and so semiprime too) which is *not unit-semiprime*.

To show (Bergman) that it is not unit-semiprime, we need to know its group of units. To do this, regard R as the coproduct over k of $R_1 = k[x|x^2 = 0]$ and $R_2 = k[y]$. Then from Corollary 2.16 of [1], one can deduce that the units of Rare just the elements c + dx + xrx, where $c, d \in k$ and $r \in R$. We see that for any such unit, we have x(c + dx + xrx)x = 0, so unit-semiprimeness fails.

as

(iv) an example (see [8]) of a ring S and a regular element $a \in S$ such that $a^3 = 0$, but a is not unit-regular in S.

as

 (\mathbf{v}) an **example** (see [5]) of Armendariz ring which is not semi-commutative.

and as

(vi) Example 2.1 [3] A prime ring which is not idempotent semiprime.

A very likely, many others.

References

- G. Bergman, Modules over coproducts of rings. Trans. Amer. Math. Soc. 200 (1974), 1-32.
- [2] G. Călugăreanu UU rings. Carpathian J. Math. 31 (2) (2015), 157-163.
- [3] G. Călugăreanu, Tsiu Kwen Lee, Jerzy Matczuk The X-semiprimeness of rings. https://arxiv.org/abs/2402.19374
- [4] G. Călugăreanu A new class of semiprime rings. Houston J. Math. 44 (1) (2018), 21-30.
- [5] V. Camillo, P. P. Nielsen McCoy rings and zero-divisors. J. Pure Appl. Algebra 212 (3) (2008), 599-615.
- [6] P. Cohn, Prime rings with invoution whose symmetric zero-divisors are nilpotent. Proc. A. M. S. 40 (1) (1973), 91-92.
- [7] P. V. Danchev, T. Y. Lam *Rings with unipotent units*. Publ. Mat. Debrecen 88 (3-4) (2016), 449-466.
- [8] P. P. Nielsen, J. Ster Connections between unit-regularity, regularity, cleanness and strong cleanness of elements and rings. Trans. A. M. S. 370 (3) (2018), 1759–1782.