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According to Paul Cohn, the following example was suggested by W. S.
Martindale (conversation) and appears in [6] (1973).

Cohn Let k be a field and R the k-algebra generated by x and y with the
single defining relation x2 = 0. Using free ring techniques we prove that the set
of left zero-divisors of R is Rx. There is a unique involution fixing x, y and this
makes R into a prime ring with involution whose symmetric zero-divisors are
nilpotent.

R is prime (and so also semiprime), since for any two nonzero elements
r, s ∈ R we have rys 6= 0.

The important subsets of R are summarized in [8].
Lemma 3.18. Let F be a field and R = F

〈

x, y : x2 = 0
〉

. The following
hold:

(1) If ab = 0 for some nonzero a, b ∈ R then a ∈ Rx and b ∈ xR. In
particular, the set of nilpotent elements of R is precisely Rx∩ xR = Fx+ xRx.

(2) The idempotents of R are trivial, so idem(R) = {0, 1}.
(3) The ring R is directly finite.
(4) Units in R are exactly the elements of the form µ+ a where µ ∈ F\{0}

and a ∈ Rx ∩ xR. In particular, U(R) + Fx ⊆ U(R), and 1− yx /∈ U(R).
Proof. (1) is found in [[5], Example 9.3 - too long to reproduce here].
(2): If e is a nontrivial idempotent in R then e is both a left and a right zero

divisor, so that e ∈ Rx ∩ xR by (1). Hence e is a nilpotent and thus e = 0, a
contradiction. (Alternatively, this follows by an easy minimal degree argument
- see below.)

(3) follows from (2) since ab = 1 always implies that ba is a nonzero idem-
potent (when 1 6= 0).

(4): Clearly (F\{0}) + (Rx ∩ xR) ⊆ U(R), so it suffices to prove the other
inclusion. Let u ∈ U(R). We may write u = µ+ u1 + u2 + u3 + u4 with µ ∈ F ,
u1 ∈ Rx ∩ xR, u2 ∈ Rx ∩ yR, u3 ∈ Ry ∩ xR and u4 ∈ Ry ∩ yR. Clearly, µ 6= 0.
We need to prove that u2 = u3 = u4 = 0.

Let v := u−1 = µ+v1+v2+v3+v4, with µ ∈ F , v1 ∈ Rx∩xR, v2 ∈ Rx∩yR,
v3 ∈ Ry ∩ xR, and v4 ∈ Ry ∩ yR. We have xu · vx = 0 and xu, vx 6= 0, so that
(1) yields xu ∈ Rx. This gives xu4 ∈ Rx, so that u4 = 0. Similarly, v4 = 0.
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Suppose that u2 6= 0 and v2 6= 0. Taking any monomial p in u2 of the
largest degree, and any monomial q in v2 of the largest degree, we see that the
monomial pq cannot cancel with any other monomial in the product uv, so that
uv 6= 1, which is a contradiction. Thus u2 6= 0 forces v2 = 0.

Similarly, u3 6= 0 forces v3 = 0. Therefore, if both u2, u3 6= 0 0 then
v = ν+v1, which gives u = v−1 = ν−1−−ν−2v1, a contradiction. Hence u2 = 0
or u3 = 0; we may assume by symmetry that u3 = 0.

Finally, suppose that u2 6= 0, so that v2 = 0. Then x = xvu = x(ν + v1 +
v3)(µ + u1 + u2) = x(µ + u1 + u2) = µνx + νxu2. Hence xu2 ∈ Fx, which is
again a contradiction. Thus u2 = 0, which completes the proof (alternatively,
see also (iii) below).

(2) We show (Bergman) that R is connected (i.e., has only trivial idempo-
tents).

Note that R is graded over the natural numbers by total degree in x and y,
and that its residue field (quotient by the ideal of elements of positive degree)
is k. This implies that the only idempotents are 0 and 1.

To see this, let I ⊂ R be the ideal of elements of positive degree. Then
R/I ∼= k, so for every idempotent e of R, the image of e in R/I is an idempotent
of k, i.e., 0 or 1.

Replacing e by 1 − e if its image is 1, we see that it suffices to show that
the only idempotent element in I is 0. And indeed, since I is graded by the
positive integers, for any idempotent e we have deg(e) = deg(e2) ≥ 2 deg(e), so
deg(e) = ∞, i.e., e = 0.

This example was used (at least):
(i) Initially in [2], after observing that local rings with nilpotent maximal

ideals and residue field F2 are UU, as an
example of a ring which has neither of these properties but is UU. The

F2-algebra presented by two generators x, y and one relation x2 = 0. It has only
units of the form 1 + xax (with nilpotent xax).

(ii) This example was ceded as
Example 2.5 [7] If R is a commutative UU-ring, we have observed in (3)

above that rad(R) = nil(R). However, if R is a general UU-ring, rad(R) ⊆
nil(R) may be a strict inclusion.

Such a UU-ring R, constructed by G. Bergman, is presented here with his
kind permission. Let R be the F2-algebra generated by x, y with the single
relation x2 = 0. Using his result on coproducts from [[1] Corollary 2.16],
Bergman showed that U(R) = 1+F2x+xRx. Since (F2x+xRx)2 = 0, we have
F2x + xRx ⊆ nil(R), so R is a UU-ring. For any nonzero r ∈ R, it is easy to
see that 1 + yry /∈ 1 + F2x+ xRx.

Therefore, rad(R) = {0}, which is properly contained in the set nil(R).

as
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(iii) an example (see [4]) of a prime ring (and so semiprime too) which is
not unit-semiprime.

To show (Bergman) that it is not unit-semiprime, we need to know its group
of units. To do this, regard R as the coproduct over k of R1 = k[x|x2 = 0] and
R2 = k[y]. Then from Corollary 2.16 of [1], one can deduce that the units of R
are just the elements c+ dx + xrx, where c, d ∈ k and r ∈ R. We see that for
any such unit, we have x(c+ dx+ xrx)x = 0, so unit-semiprimeness fails.

as
(iv) an example (see [8]) of a ring S and a regular element a ∈ S such that

a3 = 0, but a is not unit-regular in S.

as
(v) an example (see [5]) of Armendariz ring which is not semi-commutative.

and as
(vi) Example 2.1 [3] A prime ring which is not idempotent semiprime.

A very likely, many others.
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