A prime connected ring

George M. Bergman, Victor Camillo, Pace P. Nielsen, Janez Ster

March 11, 2024

According to Paul Cohn, the following example was suggested by W. S. Martindale (conversation) and appears in [6] (1973).

Cohn Let k be a field and R the k-algebra generated by x and y with the single defining relation $x^{2}=0$. Using free ring techniques we prove that the set of left zero-divisors of R is $R x$. There is a unique involution fixing x, y and this makes R into a prime ring with involution whose symmetric zero-divisors are nilpotent.
R is prime (and so also semiprime), since for any two nonzero elements $r, s \in R$ we have rys $\neq 0$.

The important subsets of R are summarized in [8].
Lemma 3.18. Let F be a field and $R=F\left\langle x, y: x^{2}=0\right\rangle$. The following hold:
(1) If $a b=0$ for some nonzero $a, b \in R$ then $a \in R x$ and $b \in x R$. In particular, the set of nilpotent elements of R is precisely $R x \cap x R=F x+x R x$.
(2) The idempotents of R are trivial, so $\operatorname{idem}(R)=\{0,1\}$.
(3) The ring R is directly finite.
(4) Units in R are exactly the elements of the form $\mu+a$ where $\mu \in F \backslash\{0\}$ and $a \in R x \cap x R$. In particular, $U(R)+F x \subseteq U(R)$, and $1-y x \notin U(R)$.

Proof. (1) is found in [[5], Example 9.3 - too long to reproduce here].
(2): If e is a nontrivial idempotent in R then e is both a left and a right zero divisor, so that $e \in R x \cap x R$ by (1). Hence e is a nilpotent and thus $e=0$, a contradiction. (Alternatively, this follows by an easy minimal degree argument - see below.)
(3) follows from (2) since $a b=1$ always implies that $b a$ is a nonzero idempotent (when $1 \neq 0$).
(4): Clearly $(F \backslash\{0\})+(R x \cap x R) \subseteq U(R)$, so it suffices to prove the other inclusion. Let $u \in U(R)$. We may write $u=\mu+u_{1}+u_{2}+u_{3}+u_{4}$ with $\mu \in F$, $u_{1} \in R x \cap x R, u_{2} \in R x \cap y R, u_{3} \in R y \cap x R$ and $u_{4} \in R y \cap y R$. Clearly, $\mu \neq 0$. We need to prove that $u_{2}=u_{3}=u_{4}=0$.

Let $v:=u-1=\mu+v_{1}+v_{2}+v_{3}+v_{4}$, with $\mu \in F, v_{1} \in R x \cap x R, v_{2} \in R x \cap y R$, $v_{3} \in R y \cap x R$, and $v_{4} \in R y \cap y R$. We have $x u \cdot v x=0$ and $x u, v x \neq 0$, so that (1) yields $x u \in R x$. This gives $x u_{4} \in R x$, so that $u_{4}=0$. Similarly, $v_{4}=0$.

Suppose that $u_{2} \neq 0$ and $v_{2} \neq 0$. Taking any monomial p in u_{2} of the largest degree, and any monomial q in v_{2} of the largest degree, we see that the monomial $p q$ cannot cancel with any other monomial in the product $u v$, so that $u v \neq 1$, which is a contradiction. Thus $u_{2} \neq 0$ forces $v_{2}=0$.

Similarly, $u_{3} \neq 0$ forces $v_{3}=0$. Therefore, if both $u_{2}, u_{3} \neq 00$ then $v=\nu+v_{1}$, which gives $u=v^{-1}=\nu^{-1}--\nu^{-2} v_{1}$, a contradiction. Hence $u_{2}=0$ or $u_{3}=0$; we may assume by symmetry that $u_{3}=0$.

Finally, suppose that $u_{2} \neq 0$, so that $v_{2}=0$. Then $x=x v u=x\left(\nu+v_{1}+\right.$ $\left.v_{3}\right)\left(\mu+u_{1}+u_{2}\right)=x\left(\mu+u_{1}+u_{2}\right)=\mu \nu x+\nu x u_{2}$. Hence $x u_{2} \in F x$, which is again a contradiction. Thus $u_{2}=0$, which completes the proof (alternatively, see also (iii) below).
(2) We show (Bergman) that R is connected (i.e., has only trivial idempotents).

Note that R is graded over the natural numbers by total degree in x and y, and that its residue field (quotient by the ideal of elements of positive degree) is k. This implies that the only idempotents are 0 and 1 .

To see this, let $I \subset R$ be the ideal of elements of positive degree. Then $R / I \cong k$, so for every idempotent e of R, the image of e in R / I is an idempotent of k, i.e., 0 or 1 .

Replacing e by $1-e$ if its image is 1 , we see that it suffices to show that the only idempotent element in I is 0 . And indeed, since I is graded by the positive integers, for any idempotent e we have $\operatorname{deg}(e)=\operatorname{deg}\left(e^{2}\right) \geq 2 \operatorname{deg}(e)$, so $\operatorname{deg}(e)=\infty$, i.e., $e=0$.

This example was used (at least):
(i) Initially in [2], after observing that local rings with nilpotent maximal ideals and residue field \mathbb{F}_{2} are UU, as an
example of a ring which has neither of these properties but is UU. The \mathbb{F}_{2}-algebra presented by two generators x, y and one relation $x^{2}=0$. It has only units of the form $1+x a x$ (with nilpotent $x a x$).
(ii) This example was ceded as

Example 2.5 [7] If R is a commutative UU-ring, we have observed in (3) above that $\operatorname{rad}(R)=\operatorname{nil}(R)$. However, if R is a general UU-ring, $\operatorname{rad}(R) \subseteq$ $n i l(R)$ may be a strict inclusion.

Such a UU-ring R, constructed by G. Bergman, is presented here with his kind permission. Let R be the \mathbb{F}_{2}-algebra generated by x, y with the single relation $x^{2}=0$. Using his result on coproducts from [[1] Corollary 2.16], Bergman showed that $U(R)=1+\mathbb{F}_{2} x+x R x$. Since $\left(\mathbb{F}_{2} x+x R x\right)^{2}=0$, we have $\mathbb{F}_{2} x+x R x \subseteq \operatorname{nil}(R)$, so R is a UU-ring. For any nonzero $r \in R$, it is easy to see that $1+y r y \notin 1+\mathbb{F}_{2} x+x R x$.

Therefore, $\operatorname{rad}(R)=\{0\}$, which is properly contained in the set $\operatorname{nil}(R)$.
(iii) an example (see [4]) of a prime ring (and so semiprime too) which is not unit-semiprime.

To show (Bergman) that it is not unit-semiprime, we need to know its group of units. To do this, regard R as the coproduct over k of $R_{1}=k\left[x \mid x^{2}=0\right]$ and $R_{2}=k[y]$. Then from Corollary 2.16 of [1], one can deduce that the units of R are just the elements $c+d x+x r x$, where $c, d \in k$ and $r \in R$. We see that for any such unit, we have $x(c+d x+x r x) x=0$, so unit-semiprimeness fails.
as
(iv) an example (see [8]) of a ring S and a regular element $a \in S$ such that $a^{3}=0$, but a is not unit-regular in S.
as
(v) an example (see [5]) of Armendariz ring which is not semi-commutative.
and as
(vi) Example 2.1 [3] A prime ring which is not idempotent semiprime.

A very likely, many others.

References

[1] G. Bergman, Modules over coproducts of rings. Trans. Amer. Math. Soc. 200 (1974), 1-32.
[2] G. Călugăreanu UU rings. Carpathian J. Math. 31 (2) (2015), 157-163.
[3] G. Călugăreanu, Tsiu Kwen Lee, Jerzy Matczuk The X-semiprimeness of rings. https://arxiv.org/abs/2402.19374
[4] G. Călugăreanu A new class of semiprime rings. Houston J. Math. 44 (1) (2018), 21-30.
[5] V. Camillo, P. P. Nielsen McCoy rings and zero-divisors. J. Pure Appl. Algebra 212 (3) (2008), 599-615.
[6] P. Cohn, Prime rings with invoution whose symmetric zero-divisors are nilpotent. Proc. A. M. S. 40 (1) (1973), 91-92.
[7] P. V. Danchev, T. Y. Lam Rings with unipotent units. Publ. Mat. Debrecen 88 (3-4) (2016), 449-466.
[8] P. P. Nielsen, J. Ster Connections between unit-regularity, regularity, cleanness and strong cleanness of elements and rings. Trans. A. M. S. 370 (3) (2018), 1759-1782.

