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Matricesthat aresimilar to their inverses
GRIGORECALUGAREANU

1. Introduction

In a group G, an elementwhich is conjugatewith its inverseis called
real, i.e. the elementandits inversebelongto the sameconjugacy class. An
elemenis calledaninvolution if it is of order2. With thesenotionsit is easy
to formulate the following questions.

1) Which are the (finite) groups all of whose elements are real ?

2) Which arethe (finite) groupssuchthat the identity andinvolutions

are the only real elements ?

3) Which are the (finite) groupsin which the real elementsform a

subgroup closed under multiplication?

Accordingto specialiststhese(general)questionscannotbe solvedin
anyreasonablevay. For example therearenumeroudamilies of groupsall
of whoseelementsare real, like the symmetricgroupsS,. Thereare many
solvablegroupswhose elementsare all real, and onecan prove that any
finite solvable group occurs as a subgroup of a solvable group whose
elementsare all real.

As for question2, notethatin any Abelian group (conjugationsare all
the identity function), the only real elementsare the identity and the
involutions,and theyform a subgroup.There are non-abelianexamplesas
well, like a Suzuki 2-group.

Question 3 is similar to questions 1 and 2.

Thereforethe abstractstudy of reality questionsin finite groupsis
unlikely to have a good outcome.This may explain why in the existing
bibliography there are only specific studies (see [1, 2, 3, 4]).

In this note,asanotherspecificstudy,we determinehe real elementof
GL,(2), i.e. we answer the following

Question: When is an invertible integral x 2 matrix similar to its inverse?

Thesepropertieslead to somequadraticDiophantineequationswhich
may be solved using software on the Internet (e.qg. [5]).

As examples willshow, for an elementu in aring R, therearethree
possibilities:
u andu™* are not conjugate,
or there are finitely many € U (R) such thatlv = wu,
or thereareinfinitely manyv e U (R) with uv = vu. Notice that if
ulv = wuthen also-v e U (R) has this property.

To simplify the wording we say that u has zero index, finite index or
infinite index respectively(we neglectthe +; e.g.u hasindex 3 meanghere
are 6 different, i.e. +vi, +Vv,, +vssuch that™v; = vu,i e {1, 2, 3}).
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A trivial exampleof elementswhich are conjugatewith their inverses
aretheinvolutions, i.e. order2 elementspy? = 1 (indeed, theu™® = u and
vV =u).

It is easyto show that the property of beingreal is invariant under
conjugations, i.e. ifi is real and conjugate tothenv is (also) real.

However, real elements need not be conjugate.

Moreover, since there existnon-real elements,not every conjugacy
classcontainsreal elementsMore precisely,in eachconjugacyclasseither
all elements are real or no element is real.

In a givengroup,it canbetricky to find the elementghat arenot real.
For example,n [6], the groupof unipotentuppertriangularn x n matrices
overthefield Fq, is consideredsothatU , ([Fqs) is a Sylow p-subgroupof the
generalinear groupGL, ([Fq), whereq is apowerof a prime numberp. The
authorsshowthatfor sufficiently largen, there exismatricesin U, (F,) that
are not real In Uy3(F,), a matrix is given, and evenif thereis no direct
proof of this, four independentomputercalculationsconfirmed that this
matrix is not real.

2. Real matricesin A, (2)
First, it is easyto specifytheinvolutory matricesU , suchthatU? = 1.

These are the four matrices £1 +01 and the matrices
a b

Up =] 1-a2 , for anya andb # Osuch thab | (1 - &).
b

As a generalremark, notice that the characteristigpolynomial of an
invertible matrix U over the integers,py (X) = X2 — Tr(U)X + 1 is
rarely reducibleover Z: it is reducibleif, and only if, Tr(U) e {0, +2}.
Indeed,A = Tr?(U) + 4 ;for +4 the equationx’* + 4 = y? hasonly the
solutions + (0, 2), and for -4 the equationx’* — 4 = ¥y has only the
solutions+ (2, 0). Hencewe cannotexpecteigenvaluesgigenvectorsor
Jordan normal form to solve our problem.

Examplesshow that the irreducibility of the characteristiqpolynomial
(or the reducibility) does not characterise real matrices.

Also noticethatfor aninvertible matrix[ i 3 } we canalwayssuppose

b # 0orc # 0, becausamtherwiseU is diagonal and thus onef the four
involutory matrices already mentioned.

Next, for the equality UV = VU, with invertible U andV thereare
four possibilitiesdetU = +1 anddetV = 1.



118 THE MATHEMATICAL GAZETTE

Here is a first result.

Theorem1: LetU = {i g}beinvertibleoverz, b  OanddetU = 1.

ThenU-V = VU with V = [X ﬂ and detV = 1 if, andonly if, the
yA

following conditions hold:

(i) thereexistsy e Z suchthat(Tr(U)? - 4)y? — 4b? is asquaresayY?,
this includegTr (U)| > 2.

(i) 2bdividesY — (d — a)y;

(i) bdivides(d — ayx — cy.

Actually Y = 2bx + (d — @)y, bz = (d — a)x — cy and the conditions

includeU = +l,.

d

Proof: AssumeU %V =VU. ThenU™= [ _ab } andthe equality of the

products gives
(d—ayx=cy+bzb(x+t)=0=c(x+t),(d-ajt=-cy—bz
The first and the fourth equations giite— a) (x + t) = 0. Hence
(i) x+1t = Ogivesobvioushh = ¢ = 0,a = d = +1,so0U = =l,.
(i) If x +t = 0, thesecondandthird equationshold,t = —x, sothefirst
and the fourth coincide.
Hencethe conditionsare(d — a)x = cy + bzandt = -x, thatis, a
matrix U is similar to its inverse (with detV = 1) if, and only fif,
U = I, or there existintegersx, y, z withx?> + yz = -1 suchhat
(d-ax =cy+ bz
This reduces to some quadratic Diophantine equations, depending on.
(1) a= d; (d — a)x = cy + bzgives(cy + bzy? + (d — a)’yz+ (d — a®> = 0,
ie.
A + [(d - & + 2bc]yz + B°Z + (d — a)* = 0.
(2)b # 0:bz=(d-a)x - cygivesbx’ + y[(d - a)x—cy] = D, i.e.
b+ @d-axy-cf+b=0
(38)c # 0:cy = (d — ayx — bzgivescx? + z[(d —a)x - bz] = ¢, i.e.

o+ (d-axz-bZ +c=0.
Sincewe assumeb = 0, thereductionof the Diophantineequation(2)

to its canonicalform gives[2bx + (d — a)y]? + 4 = [(a + d)? — 4]y?
or[(a+ d)? - 4]y? - 4% = [2bx + (d — a)y]?or else

DX? = Y? + 4b?
where X =y, Y = 2bx + (d — a)y and D = Tr2(Y) — 4. From the
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canonical form, clearly D = Tr’(A) - 4 > 0 (i.e. [Tr(U)| > 2) is
necessary in order to have real solutions.

Now the existenceof the invertible matrix V with U~V = VU (and
detv = 1) follows from the conditions (i)-(iii) in the statementof the
theorem.

Examples. (All with detU = detV = 1)

(a) Areal matrix of infinite index and irreducible characteristic polynomial
U =[iﬂwith a=2b=c=d=1,soTr(U) = 3. Then

5% -4 =12fory = 1andforY = 1, Y -(d-ay =22 = 2s0
x = 1. Finally,bz = (d — a)x — cy givesz = -2. Indeed,

UV = [_11 ﬂ[ 5 —11} - {—35 —23}
Rafew

In theabovewe havedealtwith only onematrix V sinceit is easyto see
that5y? — 4is a square foy = 1.

Alsoy = 2, Y = 4 works: 2bx + (d — a)y = Y givesx = 3 and
bz = (d - a)x — cygivesz = -5. Indeed,

v A5 515 S

5 2]

If we wantto find all V (andsotheindexof U), we mustfirst solvethe
other quadratic Diophantine equation 5> — 4 = Y2 The solutions are
+(1, 1), £(1, -1), = (4, 2) andinfinitely many other solutiongiiven by
recursionXp,1 = X, + 20h, Yne1 = Mo+ 9y, andalsox,. 1 = 9%, — 20y,
Vi1 = =, + 9y, SoU hasinfiniteindex. The characteristipolynomial,
pu(X) = X2 — 3X + 1, is irreducible oveR.

(b) Matricesin the same conjugacy class
-10

HH R R

Hence,from the invarianceto similarity mentionedin the introduction,
this U is alsoreal with infinite index.Clearly U andV havethe sametrace,

U = [ 3 1} is similar to the one in (a):
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determinantand characteristicpolynomial. For instanceV = [ 25 12}

shows the reality property.

In orderto simplify the statemenof the nextresult,we first describehe
invertible matrices U with [Tr(U)| < 2. This is only possible with
Tr(U) = OorTr(U) e {+1}.

If Tr(U) = 0, by the Cayley-Hamiltortheorem,U? = I,, sotheinvolutory

a b
matricesare the matricesU =| 1+a? for every b # 0 such that

b

b|(1- ad.
If Tr(U) = 1, detU = 1 then by the Cayley-Hamilton theorem,

U2-U +1,=0, or equivalenty U™ =1,-U. These are
a b

U=|a-a-1 1_a for everyb = Osuchthab | (&2 - a + 1).
b

ThesituationsTr (U) = 1, detU = -1andTr(U) = 1, detU = +1
are analogous.

The following result refers fIr (U)| > 2.

Theorem 2: LetU = [2 (ﬂ be invertible over Z, b = 0, [Tr (U)| > 2

anddetU = 1. ThenU-V = VU with V = {X ﬂanddetv - _1if,
Z

and only if, the following conditions hold:

()  thereexistsy e Z suchthat(Tr?(U) — 4)y? + 4b’ is a squaresay
Y2,

(i)  2bdividesY — (d — a)y,

(i)  bdivides(d — a)x — cy.

ActuallyY = 2bx + (d — @)y, bz = (d — a)x — cy.

Proof. If detU = 1, detV = -1, thesamecomputatiorasin the previous
proof works until we have to use xt — yz = -1 for t = —x, that is,
x2 + yz = 1 (instead of-1).

This slightly modifies the quadraticDiophantine equationsobtained
there:
(1) a # d: (d-a)x=cy+ bz gives (cy+bz?+ (d-a)’yz— (d-—a)?>=0,
ie.

A+ [(d - @+ 20c]lyz + P72 - (d - a = O
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(2)b = 0:bz = (d - a)x — cygivesbx’? + y[(d — a)x — cy] = b, i.e.
bx + (d - ayxy — ¢y’ - b = 0;

(d - a)x — bzgivescx® + z[(d — a)x - bz] = ¢, ie.
o +(d-axz-bZ-c=0.

(3)c # O:cy

We continue wittb # 0 and the canonical form is
[2bx + (d — a)y]® — 4b° = [(a + d)* — 4]y
orelse(Tr?(A) — 4)X? + 4b> = Y?withX = y, Y = 2bx + (d — a)y.
SinceD = Tr’(A) — 4 = 0 (i.e. [Tr(U)| > 2), the existenceof the

invertible matrix V with U™V = VU (anddetV = 1)follows from the
conditions (i)-(iii) in the statement of the theorem.

More examples
(c) A matrix which isnot real with irreducible characteristic polynomial

11

equation (2) i2x? — 2xy — ¥ + 2 = 0, with no integer solutions.

Actually, the canonical form here is DX?=Y?+4b> ie.
(2x - y)? + 4 = 3y and onecancheckdirectly that3y? — 4 is not a square,
becaus@f well-known propertiesall evensquarenumbersare divisible by
4, numbersof the form 4n + 2 are not squarenumbers,all odd square
numbersareof theform 4n + 1, numbersof theform 4n + 3arenotsquare
numbers.

The characteristicpolynomial, px(U) = X2 - 4X+ 1= (X-2)?-3, is
irreducible over.

Whensearchindor V with detV = -1, the Diophantineequation(2) is

now 2x? — 2xy — y2 — 2 = 0, with no solutions.ThereforeU = i i is not

U = [3 2}. Whensearchindgor V with detV = 1, the Diophantine

real(not similar to its inverse).

(d) Thereisno V with detV = 1 but infinitely many V with detV = -1.
The characteristic polynomial is reducible o¥er
~ [—62 147
- | -27 64
14D¢ + 126xy + 2h2 + 174= 3[(7x + 3y)? + 7?] = 0, with no integer solutions.
The characteristicpolynomial px(U) = X2 — 2X + 1 = (X — 1)?is
reducible over.
As for V with detV = -1, the Diophantine equation (2) is
14%% + 126y + 2% - 147=0, and has infinitely many solutions:
(-1 + 35 =79 0r(1 + 3s, -79).

}. As for V with detV = 1, equation (2) is
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Further, we need bz=(d-a)x-cy to be solvable for z i.e.,
1472= 126+ 2'}y.

Now 147z= 126(+1 + 3s) — 27- 7s reducesto 21z= 18(+1 + 3s) - 275
or 7z = 6(x1 + 3s) — 9s = 3(+2 + 39), for which it is necessaryand
sufficient) 7]2 + 3s or equivalently3s = 7k + 2 = 6k + k ¥ 2. Hence

for +: k=2-3, s=7l+4andv =| 2413749 -281 1],
9+6 -211-13

and for— V = 21l - 13 -49 + 28 .
9 -6 -21 + 13
BothU-%V = VU areverified, soU hasinfinite index. U is similar to
U~! by infinitely manydifferentV, all with detV = -1, butthereareno V
with detV = 1.

(e) Areal matrix of index 3 with irreducible characteristic polynomial

U = [ 31 12} First notice that equation(2) for detV = 1 hasno

integer solutions.

Secondly, equatio(®) for detV = —1 becomesl3?— 7xy +y*-13=0
which has 12 solutions: + (3, 8), +(1, 7), =(4, 15), +(1, 0), +(4, 13),
+(3, 13).

Further we need bz=(d-ax-cy to be solvable for z i.e.,

13z = -7x + y. Only the first three (+) pairs verify so we get
V=zx 3 8 e L7 Es 415 . Hence thidJ has index 3.
-1 -3 0 -1 -1 -4

(f) A real matrix of infinite index and characteristic polynomial reducible
over Z
1 4 .
U = . Now (2) fordetV = -1is
-1 -3
AC —axy+ Y —4=0= (X +Yy° -4
which has infinitely many integer solutiorgl + s, 2s).

We needtheseto verify bz = (d — a)x — cy,i.e.4z = —4x + y. This
is clearly verified if, and only if, s = 2| while x = 1 + 2I, y = 4|,
z=7Fl-landt = -x = 71 - 2I.

HenceV = 1+ 2 4 with detV = -1, i.e. U hasinfinite

+1 -1 F1 -2 |
index. The characteristic polynomial is reducible over Z:
px(U) = X2+ 2X + 1 = (X + 1%

Remark: If in GL,(Z) we write A = 31 12} B = [

previoustwo examplesthesearereal,buttheyarenot conjugate AX = XB

1 43} usingthe
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X . .
for X = { , ﬂ amountsto a homogeneouginear systemwhich hasonly

the zero solution (it4 x 4 determinant is-1).

Finally, a surprising result
Theorem3: LetU = [2 g}beinvertibleoverz,b = OanddetU = -1.

Then U™V = VU with invertible V = {X ﬂ if, and only if. U is
z
involutory.

-d b

Proof: If detU = —1then U™ = [ } and(a + d)x = —cy + bz

cy — bz Thefirst andthe fourth of
0.

b(-x +1t) = 0,c(x - t),(@a+ dyt
these equations gia + d) (X + t)

Casel: If a+d = Othen by the Cayley-Hamiltontheorem,U? — 1, = 0,,
thatisU = U~% an involutory matrix.

Case2: If a+d=0and x + t = 0 thent = —x andthe abovesystem
becomega + d)x = —cy + bz, -bx = dy,cx = az.
() If bothb # 0 = c, wecaneliminatex andsincead — bc = -1 weget

(d®>-1)y+bz=0cy+(a-1z=0.

2 -1 B .
If det 5 # 0 the systemhas only the zero solution.
c

a2 -1
Hence alsx = t = ObutV = 0,is not invertible.
2 _
If det d 1 # 0, from bc = ad +1 and
¢ a-1

(@ - 1)(d? - 1) = b?c® we obtain(a + d)> = 0which is impossible.

(b) Supposéb # 0andc = 0;sincecx = az, acannotbe zero(otherwise
U is notinvertible),soz = 0.Hence(a + d)x = Oandsox = 0, butthen
V is not invertible.

(c)b = 0,c # 0is analogous.

(d) b = ¢ = 0reducedo diagonalmatrices(the four involutory matrices
mentioned the beginning of this section).

Remark: Since the equality U™V = VU does not use V™! (and also
xt — yz = %1 is not used),the abovetheoremcoversbothdetV = +1 an
detV = -1
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