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Rings with very few nilpotents

Grigore Călugăreanu

Abstract We show that any indecomposable ring with only 3 nonzero nilpotent elements,
pairwise not commuting, is isomorphic to the ring of 2 × 2 matrices over the 2-element
field. Rings with only one or two nonzero nilpotent elements are also investigated.
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1 Introduction

In the sequel, R denotes an associative ring with identity, N(R) the set
of nilpotent elements of R (hereafter abbreviated nilpotents), Nil∗(R) the
upper nil radical of R, i.e. the sum of all nil ideals of R, J(R) the Jacobson
radical of R, S(R) the set of zero-square elements of R, Fp the field with p
elements and for any ring S, Mn(S) denotes the ring of all n× n matrices
with entries in S.

For unexplained notions and Ring Theory results we refer to [5]. For
instance, (10.16) refers to chapter 10 of this book, namely Proposition
(10.16).

An important line of study for finite rings is to establish how many noni-
somorphic rings with a given order do exist (see e.g. [8]).

Already tackled in the seminal treatise of László Fuchs (see 129 in [2]),
another line of study is to determine rings with given group of units, more
recently revisited for finite rings by D. Dolz̆an (see [1]).

In this short note, we open another line of study: find all the nonisomor-
phic rings (with identity) which have a given finite number of nilpotents.
The results we prove are especially encouraging to do so.

Among the 24 = 16 elements of the matrix ringM2(F2), there are exactly
four nilpotents, the zero matrix and another three. It is readily checked that
pairwise, these nonzero nilpotents do not commute.
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Our main result shows that a converse also holds, that is

Theorem 1.1 Let R be a unital (associative) ring which has exactly 3
nonzero nilpotents, pairwise not commuting, and has no nontrivial central
idempotents. Then R ∼=M2(F2).

We explain at once why the second hypothesis is necessary. Observe that
N(R× S) = N(R)×N(S) and that |N(R)| = 1 iff R is reduced. Therefore
if a ring R has the property above, so is R × S, for any reduced ring S.
Hence we are actually interested in indecomposable rings with this property.
Just recall that a ring is indecomposable iff it has no nontrivial central
idempotents.

The last section contains similar results for two or three nilpotents. Sur-
prisingly, these cases turn out to be more difficult then the four nilpotents
case.

2 Only 3 not commuting nilpotents

The following result proved by C. Lanski in his paper [6], which has a very
similar title to ours (S(R) denotes the set of zero-square elements), will be
useful.

Theorem 2.1 If S(R) is finite then: (i) N(R) is finite; (ii) S(R/Nil∗(R))
is finite; (iii) R/Nil∗(R) ∼= A ⊕ B with A and B ideals, A reduced and B
finite. More, in this case all these statements are equivalent.

Next we give the
Proof of the Theorem 1.1.
Denote by N(R) = {0, t, t′, t′′}, the four nilpotents.
Step 1. (i) The nilpotents are zero-square.
Just observe that t, t2 are commuting nilpotents (different, because the

only nilpotent idempotent in any ring is 0), so only t2 = 0 is possible
(similarly for t′ and t′′).

(ii) 2t = 2t′ = 2t′′ = 0.
Indeed t 6= t + t and 2t is a nilpotent which commutes with t. So 2t = 0

(and similarly for t′ and t′′).
(iii) Sums of different nonzero nilpotents are not nilpotents.
Since t+ t′ = 0 is not possible (otherwise t′ = −t commutes with t), and

obviously t + t′ /∈ {t, t′}, suppose t′′ = t + t′ with t2 = t′2 = t′′2 = 0. Then
0 = t′′2 = tt′+ t′t and by right multiplication with t this gives tt′t = 0, so tt′

is also zero-square. Since by (ii), 2tt′ = 0, we obtain tt′ = t′t, a contradiction.
(iv) R has no nonzero nil ideals.
We check that no subset of N(R) containing 0 is an ideal.
(a) {0, t} is (by (i) and (ii)) a subring but not an ideal. Indeed, we show

that the product tt′ /∈ {0, t}. If tt′ = 0 then (t+ t′)2 = t′t and so (t+ t′)4 =
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t′(tt′)t = 0, which contradicts (iii). If tt′ = t we get t(1 − t′) = 0 and t = 0
(because 1− t′ is a unit), a contradiction. Similarly for {0, t′} or {0, t′′}.

(b) That {0, t, t′} is not closed under multiplication, follows from the
argument in (a). Similarly for the other two combinations.

(c) N(R) is not closed under multiplication: we just have to show that
the remaining possibility, tt′ = t′′, leads to a contradiction.

Indeed, multiplying this equality by t to the left, gives tt′′ = 0, which is
dealt as in (a). Hence the subsets in (b) and (c) are not even subrings.

Step 2. According to (iv) above, Nil∗(R) = (0). 1

From the above Lanski Theorem (iii), since R is supposed indecomposable
and not reduced, it follows that R is finite (and so clearly left Artinian).
According to (10.16), R is semiprime and by (10.24), it is semisimple.
Using Wedderburn-Artin Theorem (3.5), again since R is indecomposable,
it follows that R is simple (Artinian) and so isomorphic to someMn(D) for
a positive integer n and a division ring D.

Step 3. If n ≥ 3 and |D| ≥ 2, then Mn(D) has at least 23 = 8 strictly
upper triangular matrices which are known to be nilpotent.

Therefore only |D| = 2 and n = 2 suits our hypothesis, and the proof is
complete.

Remarks. 1) Actually, since R is finite and indecomposable, the order
|R| of R must be a power of a prime. In our case this is 24.

2) If R is a finite simple ring, then it is isomorphic to a matrix ring
Mn(Fp) over the field with p elements, for a suitable prime p.

3 Rings with two or three nilpotents

As explained in the Introduction, here too, we consider only indecomposable
rings.

First suppose N(R) = {0, t}, that is, R has only one nonzero nilpotent.
Arguing as in the previous section, t2 = 0 = 2t, and so N(R) is a 2-element
subring of R. There are two possibilities: N(R) is a (nil) ideal or not.

If it is not, Nil∗(R) = (0) and using Step 2 from the previous Section, R
is isomorphic to some Mn(D) for a positive integer n and a division ring
D. Since the smallest such matrix ring has 3 nilpotents, this is not our case.
Therefore N(R) = Nil∗(R) = {0, t} 6= (0) must be a (nil) ideal of R. Rings
with N(R) = Nil∗(R) were called NI by Marks (see [7]). Note that R is NI
iff N(R) forms an ideal iff R/Nil∗(R) is reduced. Notice that, in this case,
the ring might not be finite.

Example. Let R be any ring and let M be any (R,R)-bimodule. Recall
that the trivial extension of R by M is the ring T (R,M) defined on R×M by
the usual addition and the multiplication (r,m)∗ (r′,m′) = (rr′, rm′+r′m).
The trivial extension T (Z,Zpk) with k = 2 and p = 2 or p = 3, are infinite
indecomposable NI rings with exactly two and three nilpotents, respectively.

1 Such rings were called nil-semisimple in [4].
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If the ring is finite then it can be determined by the Proposition below.
Denote by Tm+1(Fp) = {(aij) ∈ Mm+1(Fp)| a21 = a31 = ... = am+1,1 =

0}, the matrix subring and recall the following result obtained by Hirano,
Sumiyama in [3].

Theorem 3.1 Let R be a directly indecomposable finite ring with |J(R)| =
pm, where p is a prime and m is a positive integer. Then pm+1 ≤ |R| ≤
pm

2+m+1. The first equality holds iff R/J(R) = Fp and the second equality
holds iff R is either isomorphic or antiisomorphic to the matrix subring
Tm+1(Fp).

Notice that for m = 1 and p = 2, T2(F2) is the (sub)ring of upper trian-
gular matrices over F2.

Proposition 3.2 A finite indecomposable ring has only one nonzero nilpo-
tent element iff it is isomorphic to any of the following rings: Z4, Z2[i],
T2(F2) or the dual of T2(F2).

Proof. Since 2̂ is the only nonzero nilpotent of Z4, 1 + i is the only nonzero

nilpotent of Z2[i],

[
0 1
0 0

]
is the only nonzero nilpotent of T2(F2) and nilpo-

tents are preserved by antiisomorphisms, we only have show the conditions
are necessary. Since we supposed R to be indecomposable, as is well-known,
|R| is a power of a prime p. Further, since R is finite, N(R) = Nil∗(R) =
J(R) = {0, t} (see e.g. (10.27)), and so this prime is p = 2.

Finally using the Theorem above (for m = 1), it follows that |R| = 4, or
|R| = 8. In the first case, among the four (nonisomorphic) unital rings, only
the rings in the statement are known to have only one nonzero nilpotent,
and in the second case, T2(F2), the (sub)ring of upper triangular matrices,
or its dual, have exactly one nonzero nilpotent. ut

Remark. The ring Z2[i] may also be presented as a subring of M2(F2),

namely {02, I2, U, I2 + U}, with unit U =

[
0 1
1 0

]
and zero-square I2 + U .

Next suppose N(R) = {0, t, t′}, i.e. R has only two nonzero nilpotents.
Then two cases would be possible: t, t′ do not commute, or tt′ = t′t. In the
next proof we show that only the second situation may occur.

Notice that the matrix subring in Hirano, Sumiyama Theorem above is

now T3(F3)= {
[
a11 a12 a13
0 a22 a23
0 a32 a33

]
}, and has at least 24 = 16 nonzero nilpotents

(the strictly triangular matrices).
The results are gathered in the following

Proposition 3.3 If an indecomposable ring R has only two nonzero nilpo-
tents, these nilpotents must commute and the ring is NI. If in addition, the
ring is finite, then either R ∼= Z9 or R ∼= Z3[i] (and conversely).
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Proof. If tt′ 6= t′t, as in Step 1 (iv) we show that R has no nonzero nil ideals
(indeed tt′ = t implies t = 0; for N(R), if tt′ = 0 then t′t 6= 0 so we reduce
to the previous case), that is Nil∗(R) = (0). Step 2 and Step 3 apply and
lead to at least 3 nonzero (not commuting) nilpotents, which is not our case.
Therefore, we can continue only with tt′ = t′t.

In this case, their sum and product are also nilpotents, and so t + t′ =
0 = tt′. Thus t′ = −t and again t2 = 0 = t′2. As in the proof of the previous
Proposition, N(R) must be a (nil) ideal and so N(R) = Nil∗(R) = {0, t, t′}.
Hence R is again NI.

If R is finite (indecomposable) we again apply Hirano, Sumiyama The-
orem (m = 1) for the conclusion |R| = 32 (now |R| = 33 is not suitable,
as observed in the paragraph before the Proposition), and so R is either
isomorphic to Z9 or Z3[i]. ut

Acknowledgements Thanks are due to Greg Marks for a useful reminder.
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