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Abstract

In this note we characterize the abelian groups G which have two different proper
subgroups N and M such that the subgroup lattice L(G) = [0, M] U [N, G] is the
union of these intervals.

For every subgroup H of an arbitrary group G, the interval [H,G] is a compactly
generated (algebraic) sublattice in the subgroup lattice L(G).

After 1989, when Tuma ([4]) showed that every algebraic lattice is isomorphic to an
interval in the subgroup lattice of some group (improving Whitman’s theorem ([5], 1946)
- every lattice is isomorphic to a sublattice of the subgroup lattice of a group - as far as
possible), an increasing role of intervals, in subgroup lattices of groups, was noticed.

In [1], an arbitrary group G was called a BP-group if it has a proper subgroup H such
that the subgroup lattice L(G) is the union of the intervals [1, H] and [H,G] (i.e., any
subgroup of G is either contained in H or contains H). The subgroup H was called a
breaking point for the lattice L(G). It was pointed out that the abelian BP-groups are
the nonsimple cocyclic groups (i.e., up to isomorphism, Z(p*) with k > 1 or co).

Roland Schmidt suggested the study of finite groups which satisfy a weaker condition:
groups GG having two proper subgroups N and M such that every subgroup H of G either
contains NN or is contained in M. In this situation the subgroup lattice L(G) is again
union of two intervals, namely [1, M| and [N, G] (such groups appeared in the study of
affinities of groups - see for example 9.4.14 in [3] - but there are much more examples of
this kind).

In this paper, instead of finite groups, we characterize the abelian groups which share
this property. Our result is the following;:

Theorem 1 An abelian group G has two proper subgroups N # M such that the subgroup
lattice L(G) = [0, M]U[N, G| if and only if G is a torsion group with a primary component
G, 2 Z(p")® B, n € N*U{oo} such that p'B = 0 holds for a nonnegative integer | < n.

Additive notation is used and from now on, ”"group” means "abelian group”. N
denotes the set of all nonnegative integers, P denotes the set of all prime numbers and
standard interval notation is used. h,(b) denotes the p-height of b.

*Keywords: subgroup lattice, interval, torsion abelian group, cocyclic groups. AMS classification: 06
C 99, 20 K 10, 20 K 27



We first mention the following simple
Necessary condition: N must be cyclic. Indeed, take x € G\ M. Then (x) € [0, M]
being not possible, (x) € [N, G] or N < (z).
Next, notice there are three distinct possibilities with respect to subgroups N and M:
(A) N and M are not comparable;
(B) M < N;
(C) N < M (e.g., the above mentioned example [3]).

1 Abelian groups with (A)

In this section we suppose M and N not comparable and L(G) = [0, M]U[N, G]. In this
case [0, M] N[N, G] = 0 (otherwise N < M). The following remarks are straightforward

(a) M N N is the largest element in [0, N) and M + N is the smallest element in
(M, G].

(b) L(M + N) = [0, M]U [N, N + M], i.e., N + M has property (A).

(¢) L(G/(MNN))=[0,M/(MNN)]U[N/(MNN),G/(MnN)], ie, G/(MNN)
has property (A).

(d) (M + N)/(M N N) has property (A).

Actually, more can be proved

Lemma 1.1 If L(G) = [0, M]U [N, G], there is a prime number p such that
(a) N is a (co)cyclic p-group and M NN = pN is mazximal in N;
(b) G/M and G/(M + N) are p-groups.

Proof. (a) We have already noticed that N has to be cyclic. By the above remark
(a), N is a (co)cyclic p-group (for a suitable prime number p). Moreover, since M N N is
its largest (proper) subgroup, pN = M N N.

To prove (b), we observe that G/M is a cocyclic group since it has a smallest subgroup,
namely (M + N)/M. Moreover, since (M + N)/M = N/(NNM) = Z(p), G/M is a
cocyclic p-group, and so G/(M + N) has the same property. O

Therefore the subgroup lattice is represented by the following diagram [ul.eps]
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If N ~ Z(p*) it is readily seen that for k¥ = 1, N is minimal and hence the sum N + M
is direct (otherwise N N M = N and N, M are comparable). Actually this is the only
case NN M = 0.

The following lemma will be used in the proofs of the main results of both this and
next sections.

Lemma 1.2 For a group G and g € G let p be a prime such that K = G/(g) is cocyclic
p-group. If h,(g) # 0 and G is not infinite cyclic, then G = Hy & Hy for cocyclic p-group
Hy and finite cyclic group Hy of coprime order with p such that Hy < (g) (Hy = 0 is not
excluded).

Proof. Since for cocyclic group G the decomposition is trivial, suppose G is not
cocyclic (and so g # 0). As r(G) < r(K) + r({g)) = 2, we have r(G) = 2 and by
ro(G) = ro({g)) + 10(K) < 1, we obtain G = H; ® Hy with r(H;) = r(Hsz) = 1 - i.e., each
H; is cocyclic or infinite cyclic (if ro(G) = 1, the torsion subgroup of G is cocyclic, hence
G splits). If g = hy + hy with h; € H;, since h,(g) > 1, there exist z; € Hy and 2o € Ho
such that pry = hy and pry = he. Moreover, L(G/{g)) is a chain and we can suppose
x2 4+ (9) € ({z1) +{9))/(9)-

Thus 5 € (x1) + (g) and xo = sx1 + tg or pxe = spxy + tpg for suitable integers s, t.
Hence hy = shy + tp(hy + ho) and, the sum H; & Hj being direct, (tp — 1)hy = 0.

If ho = 0 then g € Hy and K is cocyclic if and only if (g) = H; or Hy = 0. In the first
case hy(g) = 0, hence Hy = 0 and G = H, is a cocyclic p-group (since, by hypothesis, G
is not infinite cyclic).

If hy # 0, the order of hy (say [) is finite and coprime with p. Therefore Hs is a
cocyclic g-group (if [ is a power of the prime ¢) and this implies Hy < (g) (otherwise
G/{g) is not p-group). Hence there exists a nonzero integer k such that hy = khy + kho,
and so khy = 0. Then H; is also cocyclic and necessarily a p-group. O

Here is the structure theorem for case (A):

Theorem 1.1 A group G satisfies (A) if and only if G is torsion with a cocyclic primary
component and r(G) > 1.

Proof. According to Lemma 1.1, let p be a prime such that N = (a) is cyclic of order
pF. Ifm e M\ N then m+a ¢ M (since a ¢ M) and N < (m +a). Since N # 0 is
torsion, m + a and therefore m are of finite order. Hence M and, together with G/M, G
are torsion.

Further, we show that M, C N. Indeed, if m € M,, again, N C (a +m) so that
a = s(a+m)and (1 —s)a =sm € NN M = pN for a suitable nonzero integer s.
Thus s = 1 (mod p) and let ¢ be an inverse of s modulo the order of m € M,. Thus
m =tsm =1t(1—s)a € N.

Now, N and M being not comparable, M, C N and hence pN = M NN = M,NN =
M,,.
Since M, = pN < G,, Lemma 1.2 shows that G, is a cocyclic group.

Conversely, suppose G = G, & K with G, ~ Z(p'), K # 0, K, = 0 and take
N = G,lp] = (a) and M = K. If H is a subgroup of G such that H £ K we show
N < H.



Indeed, since H £ K, there is an element » € H \ K. If this element decomposes as
h=g,+k (9, € Gp, k € K), then g, # 0 and for a suitable multiple p*h = p*(g, + k)
we have 0 # p°g, € N respectively p°k € K. Since K is torsion and K, = 0, denoting
by w the order of p°k, v and p are coprime and up®g, € H. Finally, p°g, € H and thus
N = (p°g,) <H. O

Remarks. 1) The referee pointed out that a proof in Case (A) can be reduced to the
proof of Case (B) using Lemma 1.1. Our proof uses Lemma 1.2 in both cases.

2) With above notations, G/M = @(GQ/MQ) is a p-group. Hence G, = M, for all
qeP
primes ¢ # p and M = pN @ @ G,

q#p,q€P

2 Abelian groups with (B)

Now we deal with subgroup lattices of the following type [al.eps]
G
\\N/
/ l M
\) /
0

Here again [0, M] N [N, G] = 0.
Although the following result was already stated in [1], we supply a specific ”abelian”
proof:

Lemma 2.1 G is an abelian BP-group if and only if there is a prime p and k € N*U{oc},
k > 2 such that G ~ Z(p").

Proof. If L(G) = [0, H] U [H, G|, then (as noticed in the introduction) H is a cyclic
subgroup. If p is a prime such that pH # H, then H/pH is simple, and using again
L(G) = [0,H] U [H,G], it is the smallest nonzero subgroup of G/pH. Hence G/pH is
cocyclic and, having elements of order p (in H/pH ), must be a p-group. Since an infinite
cyclic group is not a BP-group, using Lemma 1.2, we obtain G = H; & H, with cocyclic
p-group Hi, cyclic g-group Hs, ¢ and p are coprime and Hy, < pH < H. Obviously,
H, f H (otherwise G = H) so that Hy < H < H;. This implies H, = 0, and so G is
cocyclic. Since Z(p) is not satisfying (B), G has the requested form.
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The converse is immediate (the subgroup lattice of Z(p") with n € NU {oco}, n > 2 is
a chain with at least 3 elements). O

Using this we obtain at once
Theorem 2.1 A group satisfies (B) if and only if G ~ Z(p™) with n > 3.

Proof. If L(G) = [0, M]U[N,G] and M < N then L(G) = [0, N]U[N, G| and so G is
a BP-group. Hence G is cocyclic. Since the conditions 0 # M # N # G require at least
4 elements in L(G), G ~ Z(p") with n > 3.

The converse is obvious. O

3 Abelian groups with (C)

In this section we consider two proper subgroups N < M such that L(G) = [0, M| U
[N, G]. Thus the subgroup lattice looks like this [a3.eps]

G

S

0

Now L(G) = [0, M] U [N, G] and [0, M| N [N, G| = [M, N]. Moreover, [0, N] C [0, M]
and [M,G] C [N,G].

Theorem 3.1 If a group G satisfies (C) then G is a torsion group and there exists a
prime p such that G, is a BP-group or satisfies (C). Conversely, if G is a torsion group,
Gp # G for a prime p and G, is a BP-group or satisfies (C), then G satisfies (C).

Proof. Let 0 < N < M < G be such that L(G) = [0, M] U [N, GI.

If G is not a torsion group, there exists an infinite order element x € G such that
x ¢ M (otherwise, since the infinite order elements generate any group, M = G). Then
0<N<Mn(x)<(xr). fL<(x)then L<Mor N <L, hence L<MnN{z)or
N < L. Therefore (z) is a BP-group or satisfies (C), but it is easy to see that no infinite
cyclic group satisfies these properties (as for (C), if 0 < nZ < mZ < Z and p is a prime
not dividing n, then pZ ¢ [0, mZ]U[nZ, Z]). This contradiction shows that G is a torsion
group.

Suppose no component G, is a BP-group or satisfies (C). Since M # G, there exists
a prime p such that M, # G,. If N, = 0, then G, C M (N C G, is not possible,
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N being a proper subgroup), hence M, = G,. Therefore 0 < N, < M, < G, and
L(Gp) # [0, M,] U [N,,G,]. Then we can find H, < G, such that H, \ M, # 0 and
N,\ H, # 0. Tt follows H, \ M # 0 and N \ H, # (), a contradiction.

Conversely, suppose G is torsion and G, is a BP-group or satisfies (C). Then we can
find subgroups 0 < N, < M, < G, such that L(G,) = [0, M,] U [N,,Gp|. Set M =
M, & (P G,) and N=N,. Thus 0 < N < M < G. If H< G, then H = H,& (P H,)

q7#p qF#p
with H, < G, and @ H, < P G,. If N, < H,, then H € [N, G] and if H, < M,, then
a7#Pp q7#p
H < Mp@(@Hq) <M, ® (@Gq) =M.
q7#p qF#p

Actually, G, # G is needed only for a BP-group G, not satistying (C). O

Theorem 3.2 A p-group G satisfies (C) if and only if G = Z(p™) & B such that (i)
B #0,n € N*U{oo} and p'B = 0 holds for a positive integer | < n, or, ii) B = 0 and
n > 2.

Proof. If G satisfies (C), we can suppose N = (a) = Z(p). Let [ > 0 be the smallest
positive integer such that there exists € G \ M with p'a = a. Let b € G[p] \ (a) and
suppose h,(b) > I. Then b = p'y for some y € M (if y ¢ M we have a € (y), hence the
rank of (y)[p] is at least 2, a contradiction). Thus x +y ¢ M, and there exists a positive
integer k such that kz + ky = a. If k = p"m with ged(m;p) = 1 then p"(max + my) = a,
hence | < r. Moreover, [ < r implies ky € (a) and a € (y) follows, a contradiction. Then
h,(b) < for all b € G[p] \ (a) and so p'G[p] = (a). Hence p'G is a cocyclic group.

If p'G is a cyclic group then G is bounded and (using [2], 27.2) G = H & B where
H = Z(p") withn > [+1,a € H and p'B = 0 (otherwise there is b € B[p] with h,(b) > 1).
If p'G is a quasicyclic group, then G = p!G @ B and p'B = 0.

Moreover, if B =0 then G = Z(p") and condition M # N implies n > 2.

Conversely, if B = 0 then G satisfies condition (C) for N = p"~!G and M = pG.
If B # 0 we choose G = H® B with H ~ Z(p"), 0 < | < n such that p'B = 0,
N = Hlp] = (a) = Z(p) and M = A + B where A is the subgroup of H of order p
(obviously containing NN - the subgroup lattice of H being a chain with a smallest element).
If X is a subgroup of G such that X ¢ [0, M], then there exists z = h+b € X \ M with
h € H and b € B such that p” = ord(h) > p' (otherwise h € A and z € M). By p'B =0
hypothesis, 0 # p" 'z = p"~'h € H[p] = N, hence (p"~'h) = N is included in X. O

The only BP-groups which do not satisfy (B), nor (C) are Z(p?) for any prime number
p. Hence

Corollary 3.1 A group G satisfies (C) if and only if it is a torsion group with a primary
component Z(p") for n >3, or G, £ Z(p") ® B with n > 1 or oo and p'B = 0 holds for
a nonnegative integer | < n. O

4 Comments

1. There are groups satisfying both conditions (A) and (C). As an example take
G =7Z(12) = (a,b|3a = 4b = 0). Denoting by N = (a) and M = (b) the subgroup lattice
looks like this [f3.eps]



N
e

Thus L(G) = [0, M] U [N, G] for (A), and L(G) = [0, N + 2M] U [2M, G] for (C).

2. If a group G satisfies, say, the condition (C) the pair M, N of subgroups is not
necessarily unique. As an example, take the group G = Z(2) ® Z(8) = (a, b|2a = 8b = 0).
If we denote by N = (a), M = (b), S = (a+2b), T = (a + b), U = (a + 4b), the subgroup
lattice is now [c5.eps]

and L(G) = [0, N +2M] U [2M,G] = [0, N + 2M] U [4M, G].
3. Our results generalize to lattices with 0 and 1, more or less arbitrary. In what
follows we state some of these lattice versions.

e If a lattice L satisfies condition (A), i.e., L = [0,m] U [n,1] with incomparable
elements m, n then

(a) [0,m V n] =[0,m]U[n,mVn]ie., [0,mVn| satisfies condition (A);
(b) Im An,1] = [m An,m] U [n, 1] i.e., [m A n,1] satisfies condition (A);
(c) [m An,m V n] satisfies condition (A).

e Every direct product of two lattices, the first being a finite chain and the second
having 0 and 1, satisfies condition (A).

Proof. One uses the following Figure (for the sake of simplicity we have considered a
chain with only two elements) [a4.eps]



(b,1)

bxL

axL

(a,0)

Denoting the chain by {a,b} and using elements in the Cartesian product {a,b} x L,
decomposition in the required intervals is [(a,0), (a,1)] U [(b,0), (b,1)]). O

A family of torsion groups is said to be coprime if the orders of elements in any two
members are coprime. Using an early Theorem of Suzuki (see [3]): the groups with
decomposable subgroup lattices are exactly the direct sums of coprime groups, we have
an alternative proof for sufficiency of Theorem 1.1 in the special case k = 1:

let G be a torsion group of rank r(G) > 1 with a simple p-component, i.e. G = N @& M
with |[N| = p and M, = 0. Thus N and M are coprime, L(G) ~ L(N) x L(M) and L(N)
is a chain with two elements. Applying the previous result, L(G) satisfies condition (A).
O

e Complemented lattices are not satisfying condition (C).

e Let {L;,i € I} be an arbitrary set of bounded (i.e., with 0; and 1;) lattices, at least

one of these satisfying condition (C). Then the direct product L = H L; satisfies
el

condition (C). Conversely, if L satisfies condition (C), i.e. L = [0,a] U [3,1] and

for an index j € I, 0; < B; < oj < 1;, then L; satisfies condition (C).

e If a lattice satisfies condition (C), i.e., L = [0,m] U [n, 1], then m is essential and n
is superfluous in L. Moreover, every element disjoint with n belongs to [0, m].

Finally we mention the lattice version of our initial proof of case (A):

e Let L be a modular lattice, n an atom and m a dual atom in L such that 1 =nVm
andn Am =0. Then L = [0,m] U [n, 1] if and only if for every element v in [0, m],
n has a unique (relative) complement (namely v) in the sublattice [0,n V v].

Using this, one can show that, excepting the case 1 = nV m and n Am = 0, (C)
follows from (A).

Acknowledgment. Thanks are due to the referee for his (her) valuable suggestions
and improvements.
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