An exercise on isomorphic idempotents

Grigore Călugăreanu

July 29, 2023

Isomorphic idempotents are defined via R-module isomorphisms as follows (see Proposition (21.20) [2]) .

Definition. Let e, f be idempotents in a ring R. We say that e and f are isomorphic if $e R \cong f R$ as right R-modules. Equivalently, if $R e \cong R f$ as left R-modules.

In the proposition mentioned above, another equivalent definition which avoids R-modules and their isomorphisms is given: there exist $a, b \in R$ such that $e=a b$ and $f=b a$.

Chapter 21 of [2], includes an exercise, whose solution (see [1]) uses R modules and their isomorphisms.

In the sequel we provide a solution which avoids R-modules and their isomorphisms. Obviously we use the non-module equivalent definition mentioned above. We use the notation $\bar{e}=1-e$ for the complementary idempotent of e.

Ex. 21.16 Let e, f be idempotents in R.
(1) Show that e and f are conjugate iff $e \cong f$ and $\bar{e} \cong \bar{f}$.

Solution. \Longrightarrow If $f=\left(u^{-1} e\right) u$ then $e=u\left(u^{-1} e\right)$ so $e \cong f$ (by the equivalent definition). Moreover, $\bar{f}=1-f=1-u^{-1} e u=u^{-1}(1-e) u=u^{-1} \bar{e} u$.
\Longleftarrow Suppose $e \cong f$ and $\bar{e} \cong \bar{f}$. By the definition again, let $e=a b, f=b a$, $\bar{e}=c d, \bar{f}=d c$. Then for $u=a f+c \bar{f}$ we have $u^{-1}=b e+d \bar{e}$ and $u f u^{-1}=e$, $u \bar{f} u^{-1}=\bar{e}$.

The details.
$u u^{-1}=(a f+c \bar{f})(b e+d \bar{e})=a f b e+c \bar{f} d \bar{e}+a f d \bar{e}+c \bar{f} b e=a b a b a b+c d c d c d+$ $a(1-d c) d c d+c(1-b a) b a b=e+\bar{e}+0+0=1$.

Similarly $u^{-1} u=(b e+d \bar{e})(a f+c \bar{f})=1$.
Next $u f u^{-1}=(a f+c \bar{f}) f(b e+d \bar{e})=a f b e+a f d \bar{e}=e+0=e$ and similarly $u \bar{f} u^{-1}=(a f+c \bar{f}) \bar{f}(b e+d \bar{e})=c \bar{f}(b e+d \bar{e})=c \bar{f} b e+c \bar{f} d \bar{e}=0+\bar{e}=\bar{e}$.

Of course, there is no "miracle" in finding the above unit u.
We disclose the process. The R-module proofs are in [2] and [1], respectively.
Proposition 21.20 [Proof] (3) \Rightarrow (1) Given $e=a b, f=b a$, the maps $\theta: e R \rightarrow f R, \theta(x)=b x$ and $\theta^{\prime}: f R \rightarrow e R, \theta^{\prime}(y)=a y$ are inverse to each other and so right R-modules isomorphisms.

Ex. 21.15 [special case] Let $1=e+\bar{e}=f+\bar{f}$. If $e \cong f$ and $\bar{e} \cong \bar{f}$, show that there exist a unit u such that $f=u^{-1} e u$ and $\bar{f}=u^{-1} \bar{e} u$.

Solution. We have

$$
R_{R}=e R \oplus \bar{e} R=f R \oplus \bar{f} R
$$

Fix an isomorphism $\phi: f R \rightarrow e R$ and $\varphi: \bar{f} R \rightarrow \bar{e} R$. Then $\phi \oplus \varphi$ is an automorphism of R_{R}, given by a left multiplication by some unit u.

Specifically, given a, b, c, d as above we take $\phi(y)=a y$ and $\varphi(x)=c x$. Then for any $r \in R$ we write $r=1 \cdot r=(f+\bar{f}) r=f r+\bar{f} r$ and so $(\phi \oplus \varphi)(r)=$ $\phi(f r)+\varphi(\bar{f} r)=(a f+c \bar{f}) r$. Hence $u=a f+c \bar{f}$ is a suitable unit.

References

[1] T. Y. Lam Exercises in Classical Ring Theory. Second Edition, Problem Books in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 2003.
[2] T. Y. Lam A First Course in Noncommutative Rings. Second Edition, Graduate Texts in Math., Vol. 131, Springer-Verlag, Berlin-Heidelberg-New York, 2001.

