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Abstract. We construct a family of dualities on some subcategories of the
quasi-category S of self-small groups of finite torsion-free rank which cover the

class S. These dualities extend several of those in the literature. As an appli-

cation, we show that a group A ∈ S is determined up to quasi–isomorphism by
the Q–algebras {Q Hom(C, A) : C ∈ S} and {Q Hom(A, C) : C ∈ S}. We also

generalize Butler’s Theorem to self-small mixed groups of finite torsion-free
rank.

1. Introduction

There has been considerable recent interest in the class S of mixed finite rank
self–small abelian groups, that is, mixed abelian groups G of finite torsion–free rank
such that for every index set I, the natural homomorphism from Hom(G, G(I)) to
(Hom(G, G))(I) is an isomorphism.

The reason for this interest is that S is one of the few extensive classes of mixed
abelian groups for which it is possible to formulate plausible and interesting struc-
ture theorems. Furthermore, this class is a common generalization of several well
known special classes of groups, such as finite rank torsion–free groups, quotient di-
visible groups, and pure subgroups of direct products over infinitely many p of finite
p–groups; see for example [AM75], [AGW95], [FoW95], [FoW98(1)] and [FoW98(2)].
Several characterisations of S and its subclasses are presented in [ABW09, Section
2].

The class S is not closed with respect to finite direct sums, see for example
[ABW09, Proposition 2.5]. Therefore it is convenient to represent S, as in [AB09],
as a union of a family of subclasses S(X), indexed by sets X of primes, such that
each S(X) is closed with respect to quasi–isomorphisms and finite direct sums.

These are the main novelties in our approach:
(1) We represent the groups in S and S(X) as pushouts of torsion-free groups

and quotient divisible mixed groups.
(2) We describe dualities between the quasi–homomorphism categories S(X)

and S(X{), where X{ is the complement of X in the set of primes, which
enables us to transfer properties between them.

The idea of using dualities to study modules dates back to the folklore of dual finite
dimensional vector spaces. This concept was first applied in the context of abelian
groups by Warfield [Warf68] who described an exact duality F = Hom(−, A) :
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C → C, where A is a rank 1 torsion–free group and C is the category of A–locally
free groups and group homomorphisms. These kinds of dualities, called Warfield
dualities, were recently extended in [AB10] and [Br10] to the case in which A is a
mixed group of torsion–free rank 1.

A category C whose objects are abelian groups is called a quasi–category if the
morphisms are quasi–homomorphisms, i.e., HomC(G, H) = Q Hom(G, H). This
concept was exploited in two papers [Ar72(1)] and [Ar72(2)] of Arnold in 1972.
He constructed a duality on the quasi–category of finite rank torsion–free quotient
divisible groups G, that is, those having a full free subgroup F for which G/F is
divisible. Arnold’s duality used in an essential way the invariants introduced in
[BP61] of the localisations ẐpG of G at primes p, as well as the vector space dual
Hom(QG, Q) of the divisible hull.

Fomin [Fo87] and Vinsonhaler and Wickless [VW90] showed that every finite rank
torsion–free abelian group G can be decomposed as a (non–direct) sum G1 + G2 of
a locally free group G1 (in the sense of Warfield) and a quotient divisible group G2.
They constructed a duality of the quasi–category of finite rank torsion–free abelian
group by combining the Warfield duality on G1 and the Arnold duality on G2.

The first example of functors involving a subcategory of S occurs in [W94], in
which Wickless constructs an equivalence between the quasi–subcategory G of S
of groups which are divisible modulo torsion and the quasi–category of locally free
finite rank torsion–free groups. Fomin and Wickless [FoW95] used these functors
to establish a duality between these quasi–categories.

Then in 1998, [FoW98(1)], the same authors discovered a duality between the
quasi–category of self–small groups which are divisible modulo some full free sub-
group and the quasi–category of finite rank torsion–free groups which extends both
Arnold’s and Wickless’ duality. This duality is described in Section 3 below. Also
in 1998 [FoW98(2)] Fomin and Wickless specialized their results to several other
subcategories of S.

These numerous dualities were applied both to determine properties of the cate-
gories, such as the Krull–Schmidt property, and to establish existence of arbitrarily
large indecomposable objects. Recently, Fomin proved in [Fo09] that the duality
from [FoW98(1)] comes from a duality between some subcategories of Ab, the cate-
gory of all abelian groups, which have as objects finite rank torsion-free groups and
quotient divisible groups respectively. Moreover this duality is exact.

Some problems remained unsolved, in particular, the generalization of the duality
to the full quasi–category S, and that is what we shall do in this paper. In Section
2, we characterize S as a union of subcategories S(X) indexed by sets of primes
which are closed under direct sums and homomorphic images.

In Section 3 we characterize self–small groups as pushouts of torsion–free and
quotient divisible groups which enables us to extend the Fomin–Wickless duality
to a family of dualities dX : S(X) � S(X{) : d′X , where S(X) are considered as
quasi-categories (Theorem 3.7). Moreover, it is proved that d′X = dX{ and the
restrictions dX |S(X)∩S(Y ) and dY |S(X)∩S(Y ) coincide.

Section 4 contains our applications, firstly a version of Fuchs’ Problem 34 appro-
priate for S(X) and secondly an interpretation of Butler’s Theorem in the context
of S(X).

We use standard notations and terminology presented in [Ar82], [F70], [F73]. If
G is a group and p is a prime then Gp denotes the p-component of G. For every
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set X of primes we denote by X{ the complementary set P \X. Moreover, by rank
we understand the torsion-free rank. For quasi-categories we refer to [Wa64].

2. Categories of self–small mixed groups

For any sets X and Y , we say X ⊆� Y if X \ Y is finite and X is quasi–equal to
Y , denoted X

�= Y , if X ⊆� Y ⊆� X.
Let P be the set of primes. There are two subsets of P associated with a mixed

group G of finite torsion–free rank:

S(G) = {p ∈ P | Gp 6= 0} and D(G) = {p ∈ P | (G/F )p is divisible},
where F is a full free subgroup of G. The set D(G) is well defined up to a quasi-
equality of sets.

Self-small groups of finite torsion-free rank can be characterized in many ways
(see [ABW09]). We recall here that a finite torsion-free rank group G is in S if and
only if all its p-components are finite and S(G) ⊆� D(G). The class of finite rank
torsion-free groups coincides with the subclass {G ∈ S : S(G) = ∅}, and the class
of quotient divisible groups with the subclass {G ∈ S : D(G) .= P}.

For any groups G and H, G is a quasi–subgroup of H, denoted G ≤� H, if for

some integer n, nG ⊆ H and G is quasi–isomorphic to H, denoted G
�∼= H, if

G ∼= K ≤� H ≤� L ∼= G. More generally, a quasi–homomorphism from G to H
is an element of Q Hom(G, H) = Q ⊗ Hom(G, H) and a quasi–isomorphism is an

invertible quasi–homomorphism. If G ∈ S and H
�∼= G then H = K⊕B with K ∈ S

and B a bounded group (see [Br04, Lemma 2.7]). Therefore, if G ∈ S and H
�∼= G,

we will assume that H ∈ S.
For every set X of primes we denote by S(X) the quasi–category whose objects

are the set
{G ∈ S : S(G) ⊆� X ⊆� D(G)}.

Lemma 2.1. For all X ⊆ P, the category S(X) is closed with respect to quasi-
isomorphisms and finite direct sums. Moreover, if G, H ∈ S(X) and α : G→ H is
a homomorphism then Im(α) ∈ S(X).

Proof. Let G ∈ S(X) and let H
�∼= G. Then for some integers m and n, mH ∼= nG.

It follows that S(G) �= S(H). Moreover, there are full free subgroups F1 ≤ mH
and F2 ≤ nG such that mH/F1

∼= nG/F2. Then (H/F1)p
∼= (G/F2)p for all primes

p which are coprime with mn, so D(H/F1)
�= D(G/F2).

If G, H ∈ S(X), then clearly G⊕H ∈ S(X).
Let α : G → H be a homomorphism, and G, H ∈ S(X). Then G ⊕H ∈ S(X),

so α(G) ∈ S by [AM75]. It is obvious that S(Im(α)) ⊆ S(H) ⊆� X, and X ⊆�

D(G) ⊆� D(Im(α)). �

Corollary 2.2. Let H be a group and let G ≤ H be a subgroup such that H/G is
finitely generated. If X is a set of primes, then H ∈ S(X) if and only if G ∈ S(X).

Proof. Since H/G is finitely generated, there is a subgroup K ≤ H which contains
G such that K/G is finite and H = K ⊕ U with U a free subgroup of H. Since
U ∈ S(X), we observe that H ∈ S(X) if and only if K ∈ S(X). Therefore the
corollary follows from [Br04, Lemma 2.5] and Lemma 2.1. �
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Corollary 2.3. For all X ⊆ P, S(X) is an additive category and for all G, H ∈
S(X), Q Hom(G, H) is a finite dimensional Q-algebra.

Proof. The group G ⊕ H is self-small, so Hom(G ⊕ H,T (G ⊕ H)) is a torsion
group. Therefore the group Hom(G, T (H)) is a torsion group and it follows that
Hom(G, H) is of finite torsion-free rank. Hence Q Hom(G, H) is a finite dimensional
Q-algebra. �

3. Self–small groups as pushouts

The homological properties of pushouts and pullbacks of abelian groups are
proved in [F70, Section 10]. We start this section with some results about pushouts
which will be helpful in the construction of our duality. A part of the following
lemma is implicit in [VW90, p. 474].

Lemma 3.1. Suppose that A and B are two groups with a common subgroup F ,
and that the groups A, B are subgroups of a group G. Let P be the pushout induced
by the diagram A←↩ F ↪→ B, where we identify A and B as subgroups of P .

Then G ∼= P if and only if G/F ∼= A/F ⊕B/F .

Proof. Since P is the pushout of the diagram A ←↩ F ↪→ B, we can suppose
that P = (A ⊕ B)/U , where U = {(y,−y) | y ∈ F} is the diagonal subgroup
induced by F . Then F can be identified, as subgroup of P , with F̂ = {(x, 0) + U :
x ∈ F} = {(0, x) + U : x ∈ F}. The reader can verify directly that the map
α : P/F̂ → A/F⊕B/F , α((a, b)+F̂ ) = (a+F, b+F ), is a well defined isomorphism.

Conversely, if F ≤ A,B ≤ G and G/F = A/F ⊕ B/F then G = A + B, and
A ∩ B = F . It is not hard to verify that β : G → P , β(a + b) = (a, b) + U for all
a ∈ A and b ∈ B, is well defined and is an isomorphism. �

Proposition 3.2. Let X be a set of primes. A group G of rank n is in S(X) if
and only if it is quasi-isomorphic to a group P which can be embedded in a pushout
diagram

(POX [F,K,L])

F −−−−→ L −−−−→ Uy yα

∥∥∥
K −−−−→

β
P −−−−→ Uy y

V V
where

(1) The three term rows and columns are short exact sequences;
(2) F is a free group of rank n;
(3) L is a torsion-free group of rank n;
(4) U is a torsion group such that S(U) ⊆ X{;
(5) K is a quotient divisible group of rank n;
(6) V is a torsion group such that S(V ) ⊆ X.

Under these conditions
(7) For all p ∈ P, Pp = β(Kp).
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Proof. Let G ∈ S(X). Then we can suppose, modulo a finite direct summand, that
S(G) ⊆ X. If F is a full free subgroup of G then G/F is p-divisible for almost all
primes p ∈ X, so the set Y = X \ D(G/F ) is finite. Let R be the reduced part
of ⊕p∈Y (G/F )p, a direct summand of G/F . Let P be a subgroup of G containing
F such that P/F is a direct complement of R in G/F . Then P is a finite index
subgroup of G, and P/F is p-divisible for all p ∈ X.

For this group P we consider the subgroups F ≤ K, L ≤ P such that K/F =
⊕p∈X(P/F )p and L/F = ⊕p∈X{(P/F )p. Applying Lemma 3.1, we obtain P as a
pushout with the properties (1)− (7).

Conversely, if P is the pushout in the diagram POX [F,K,L] then P ∈ S(X), so
any quasi–isomorphic G ∈ S(X). �

Quasi-homomorphisms in S(X). Now we consider two groups G, G′ ∈ S(X),
presented as push-outs using the diagrams POX [F,K, L] and POX [F ′,K ′, L′] re-
spectively.

If the homomorphism α : G → G′ represents a quasi-homomorphism in S(X)
then we can suppose that α(F ) ⊆ F ′. Then α induces a homomorphism α :
G/F → G′/F ′. By the choice of K, L, K ′ and L′, we have α(K/F ) ⊆ K ′/F ′

and α(L/F ) ⊆ L′/F ′. Therefore α(K) ⊆ K ′ and α(L) ⊆ L′, so α induces two
homomorphisms κ : K → K ′, κ(x) = α(x), and λ : L→ L′, λ(x) = α(x).

Conversely, if κ : K → K ′ and λ : L → L′ are two homomorphisms such
that κ|F = λ|F , then they induce a homomorphism α : G → G′, defined by
α(y + z) = κ(y) + λ(z) for all y ∈ K and z ∈ L.

Lemma 3.3. With the notations above,

(1) Im(α) .= Im(κ) + Im(λ),
(2) Ker(α) .= Ker(κ) + Ker(λ).

Proof. (1) is obvious since α(x) = κ(k) + λ(l), whenever x = k + l with k ∈ K and
l ∈ L.

(2) The inclusion Ker(κ) + Ker(λ) ⊆ Ker(α) is obvious.
To prove the converse quasi-inclusion, we consider the subgroup

U = {k ∈ K : ∃l ∈ L such that k + l ∈ Ker(α)} ≤ G.

If x = k + l ∈ Ker(α) with k ∈ K and l ∈ L then α(k) = α(−l) ∈ K ′ ∩ L′ = F ′.
Then α(U) ⊆ F ′, so α(U) is a free group. It follows that U = Ker(α|U ) ⊕ H =
(Ker(α) ∩K)⊕H with H ∼= α(U) a free subgroup of U ≤ G. It follows that there
is a non-zero integer n such that nU ⊆ Ker(α) ∩K + F = Ker(κ) + F .

If x ∈ nKer(α), then x = nk + nl with k ∈ U and l ∈ L. Hence nk = y + z with
y ∈ Ker(κ) and z ∈ F . Since F ⊆ L, z + nl ∈ L, it follows that x = y + (z + nl) ∈
Ker(κ) + Ker(λ). �

Recall that a sequence G
α→ G′ α′

→ G′′ is quasi-exact (i.e. exact in the quasi–
category of abelian groups) if and only if Im(α) .= Ker(α′).

Theorem 3.4. Let

(E) G
α→ G′ α′

→ G′′

be a sequence of groups in S(X) and homomorphisms. Suppose that
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i) these groups are represented by the diagrams

POX [F,K, L], POX [F ′,K ′, L′] and POX [F ′′,K ′′, L′′] respectively.

ii) the homomorphisms α and α′ induce the homomorphisms

(Eκ) K
κ→ K ′ κ′

→ K ′′, and

(Eλ) L
λ→ L′ λ′

→ L′, respectively.

Then the sequence (E) is quasi-exact if and only if the sequences (Eκ) and (Eλ)
are quasi-exact.

Proof. Suppose that (E) is an exact sequence and that n is a non-zero integer such
that nIm(α) ⊆ Ker(α′).

Let x ∈ Im(κ) ⊆ Im(α). Then nx ∈ Ker(α′) .= Ker(κ′) + Ker(λ′), so there are
an integer m > 0 and elements y ∈ Ker(κ′) ⊆ K ′, z ∈ Ker(λ′) ⊆ L′ such that
mnx = y + z. It follows that z ∈ K ′ ∩ L′ = F ′, so κ′(z) = λ′(z) = 0. Then
mnx ∈ Ker(κ′), and mnIm(κ) ⊆ Ker(κ′).

Let x ∈ Ker(κ′)\mnIm(κ). Since Ker(κ′) is quasi-contained in Im(α) .= Im(κ)+
Im(λ), there are an integer r 6= 0 for which rKer(κ′) ⊆ Im(κ)+ Im(λ) and elements
u ∈ K and v ∈ L such that rx = κ(u) + λ(v). Since mnκ(u) ∈ Ker(κ′), it
follows that mnλ(v) ∈ Ker(κ′). But mnλ(v) ∈ L′, and it follows that mnλ(v) ∈
Im(λ) ∩Ker(κ′) ≤ K ′ ∩ L′ = F ′.

Then there exists a non-zero integer r such that for every x ∈ Ker(κ′)\mnIm(κ)
there is y ∈ Im(λ) ∩Ker(κ′) such that mnrx−mny ∈ mnIm(κ).

Since Im(λ) ∩ Ker(κ′) ≤ K ′ ∩ L′ = F ′ is a free group, λ−1(Im(λ) ∩ Ker(κ′)) =
Ker(λ)⊕F1, where F1 is a free subgroup of L. Then there is an integer s 6= 0 such
that sF1 ⊆ F , and it follows that λ(sz) = κ(sz) for all z ∈ F1.

For every x ∈ Ker(κ′)\mnIm(κ) and y ∈ Im(λ)∩Ker(κ′) such that mnrx−mny ∈
mnIm(κ), we pick an element z ∈ F1 such that λ(z) = y. Since sy = λ(zs) =
κ(sz) ∈ Im(κ) and mnrsx −mnsy = s(mnrx −mny) ∈ mnIm(κ), it follows that
mnrsx ∈ Im(κ), so mnrsKer(κ′) ⊆ Im(κ).

Then Im(κ) .= Ker(κ′), so the sequence (Eκ) is exact. The exactness for (Eλ) is
proved in the same way.

If (Eκ) and (Eλ) are quasi-exact sequences, then the sequence (E) is quasi-exact
as a consequence of Lemma 3.3. �

Fomin-Wickless duality. In the following we summarize some useful properties
of the duality

∗ : A� D : ∗

where A is the quasi–category of finite rank torsion-free groups and D is the quasi–
category of all quotient divisible groups, constructed by Fomin and Wickless in
[FoW98(1), Theorem 10].

In this theorem, they associate with every group G in A or D a full free subgroup
F of G, and construct a dual G∗ of G and a full free subgroup F ∗ of G∗. Moreover,
if f : G1 → G2 is a homomorphism, and F1, F2 are the corresponding full free
subgroups, they construct the dual homomorphism f∗ by means of a rational matrix
L which represents the transition from the coefficients of elements of G with respect
to a basis of F and the coefficients of elements of G∗ with respect to a basis of F ∗.

These dual groups have the following properties:
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Lemma 3.5. Let G ∈ A or D and let F be a full free subgroup of G. Let p ∈ P.
(1) (G/F )p = 0 if and only if G∗ is p-divisible.
(2) If G ∈ A, then G∗

p is isomorphic to the reduced summand of (G/F )p

(3) Suppose that f : G → G′ is a homomorphism between two groups G, G′

in A or in D with full free subgroups F and F ′ having bases (x1, . . . , xn)
and (x′1, . . . , x

′
m) respectively, used in the construction of G∗ and G′∗. If

(x∗1, . . . , x
∗
n) and (x′∗1 , . . . , x′∗m) are the corresponding bases of the dual groups

G∗ and G′∗ and L is a n×m matrix with integral entries such that

(f(x1), . . . , f(xn))t = L(x′1, . . . , x
′
m)t, then

(f∗(x′∗1 ), . . . , f∗(x′∗m))t = Lt(x∗1, . . . , x
∗
n)t.

We will also use the following

Remark 3.6. If we restrict the functors ∗ to the class A ∩ D we obtain Arnold’s
duality constructed in [Ar72(2)]. So, when we compute G∗ for a group G ∈ A∩D,
does not matter if we consider G a torsion–free group or a quotient divisible group.

The main result. Now we are ready to prove the main result of this paper. Recall
that for any set X of primes, ZX is the rank 1 ring divisible by a prime p if and
only if p ∈ X{.

Theorem 3.7. Let X be a set of primes. The quasi–categories S(X) and S(X{)
are dual.

Proof. If X is finite then the quasi–categories S(X) and A, respectively S(X{) and
D, are equivalent. Therefore for the cases X is finite or X{ is finite, the dualities
are supplied by [FoW98(1), Theorem 10].

Thus we can suppose that X and X{ are infinite sets of primes. Let G ∈ S(X).
Then we can suppose that S(G) ⊆ X and that there is a full free subgroup F of G
such that (G/F )p is p-divisible for all p ∈ X. We can view G as a pushout as in
the diagram POX [F,K, L] from Proposition 3.2.

We apply the duality ∗ to the groups K ∈ D and L ∈ A together with the
(common) full free subgroup F . Then we obtain two groups K∗ ∈ A and L∗ ∈ D,
and we can suppose that they have a common full free subgroup F ∗ (constructed
in the proof of [FoW98(1), Theorem 10]). Note that K∗ is p-divisible for all p ∈ X{

and L∗ is p-divisible for all p ∈ X (and L∗
p = 0 for all p ∈ X).

For these groups we consider the subgroups F ∗ ≤ K∗
(X) ≤ K∗ and F ∗ ≤ L∗

(X{)
≤

L∗ such that K∗
(X)/F ∗ = ⊕p∈X(K∗/F ∗)p and L∗

(X{)
/F ∗ = ⊕p∈X{(L∗/F ∗)p. We

define the dual d(G) of G to be the pushout of the diagram K∗
(X) ←↩ F ∗ ↪→ L∗

(X{)
:

(POX{ [F ∗, L∗
(X{)

,K∗
(X)])

F ∗ −−−−→ K∗
(X)y y

L∗
(X{)

−−−−→ d(G)

Observe that d(G) ∈ S(X{) as a consequence of Proposition 3.2.
Now, we consider two groups G, G′ ∈ S(X) with full free subgroups F with

basis (x1, . . . , xn) and F ′ with basis (x′1, . . . , x
′
n) respectively. Constructing the

dual groups d(G) and d(G′) as above, we will use the subgroups K, L for G and
K ′, L′ for G′.
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If α : G→ G′ is a homomorphism then we can suppose that α(F ) ⊆ F ′. Then α
induces a homomorphism α : G/F → G′/F ′. By the choice of K, L, K ′ and L′, we
have α(K/F ) ⊆ K ′/F ′ and α(L/F ) ⊆ L′/F ′. Therefore α(K) ⊆ K ′ and α(L) ⊆ L′,
so α induces two homomorphisms κ : K → K ′, κ(x) = α(x), and λ : L → L′,
λ(x) = α(x). If κ∗ : K ′∗ → K∗ and λ∗ : L′∗ → L∗ are the dual maps constructed in
[FoW98(1), Theorem 10], then κ∗(x) = λ∗(x) ∈ F ∗ for all x ∈ F ′∗ as a consequence
of Lemma 3.5. Therefore, κ∗(K∗

(X)) ⊆ K∗
(X) and λ∗(L∗

(X{)
) ⊆ L∗

(X{)
. These data

induce a homomorphism d(α) : d(G′)→ d(G) by d(α)(k′∗ + l′∗) = κ∗(k′∗)+λ∗(l′∗)
(this is well defined since K ′∗ ∩L′∗ = F ′∗ and κ∗(x) = λ∗(x) ∈ F ∗ for all x ∈ F ′∗).

It is not hard to see that we have defined a contravariant functor d : S(X) →
S(X{). We shall prove that this is a duality.

We consider a group H ∈ S(X{) and a pushout diagram

(POX{ [F, V, U ])

F −−−−→ Uy y
V −−−−→ H

with V ∈ D and U ∈ A such that (V/F )p = 0 for all p ∈ X and (U/F )p = 0 for all
p ∈ X{.

Then we consider the groups V ⊗ ZX{ ∈ D and U ⊗ ZX ∈ A with the same
common full free subgroup F .

We apply the duality ∗ to obtain two groups (U ⊗ZX)∗ ∈ D and (V ⊗ZX)∗ ∈ A
with a common full free subgroup F ∗ such that (U∗/F ∗)p = 0 for all p ∈ X{ and
(V ∗/F ∗)p = 0 for all p ∈ X. Then the pushout d′(H) of the diagram U∗ ←↩ F ∗ ↪→
V ∗ can be embedded in a pushout diagram of the form POX [F ∗, U∗, V ∗].

To define d′ on quasi-homomorphisms, we consider a homomorphism β : H →
H ′, with H, H ′ ∈ S(X{). Let F , U , V groups associated to H as in the construction
of d′(H), and let F ′, U ′, V ′ be corresponding subgroups associated to H ′. We can
suppose that β(F ) ⊆ F ′, so β induces two homomorphisms µ : U → U ′ and
ν : V → V ′. Using again Lemma 3.5 we deduce that the dual maps κ : (µ⊗ 1ZX

)∗ :
U ′∗ → U∗ and λ : (ν ⊗ 1Z

X{
)∗ : V ′∗ → V ∗ have the property κ(x) = λ(x) for

all x ∈ F ∗. Therefore they induce a homomorphism d′(β) : d′(H ′) → d′(H),
d′(β)(y + z) = κ(y) + λ(z) for all y ∈ U ′∗ and z ∈ V ′∗.

A direct computation shows that d is a duality with inverse d′. �

In [AW04] the authors observed that the dualities ∗ : A � D :∗ preserve the
torsion-free rank and the quasi-exactness in A and D (see also [Fo09]). Using
Theorem 3.4 and the proof of Theorem 3.7, we have the following

Corollary 3.8. The dualities d and d′ constructed in Theorem 3.7 preserve torsion-
free rank and quasi-exactness.

If X is a set of prime, then we will denote by dX : S(X) → S(X{) and d′X :
S(X{)→ S(X) the functors constructed in Theorem 3.7.

Corollary 3.9. If X is a set of primes, then d′X = dX{ .

Proof. Using the notations from the proof of Theorem 3.7, and using Lemma 3.5 we
observe that (U ⊗ ZX)∗ = U∗

(X) and (V ⊗ ZX)∗ = V ∗
(X{)

. Therefore d′X = dX{ . �
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Example 3.10. If X is any set of primes then Q ∈ S(X). We can view Q as a
pushout POX(Z, ZX , ZX{). Since Z∗

X = ZX{ and Z∗
X{ = ZX , (Z∗

X)(X) = Z = Z∗
X{

and dX(Q) will be the pushout of the diagram POX{ [Z, Z, Z]. Therefore dX(Q) =
Z.

Example 3.11. Let X be a set of primes and G ∈ S(X). If G is a quotient divisible

group or a torsion–free group then dX(G)
�∼= G∗.

Proof. Suppose that G is a quotient divisible group. From the previous example
we know that dX(Q) = Z = Q∗. Therefore, we can suppose that G is reduced. We
view G as a pushout POX(G, K,L) as in Proposition 3.2, where we fixed a full free
subgroup F ≤ G. Using the notations from [FoW98(1)] for the quotient divisible
groups G, K and L, we observe that MG

p = MK
p for all p ∈ X and MG

p = ML
p for

all p ∈ X{. From the construction of G∗ presented in [FoW98(1), p.49], it follows
that G∗ = K∗

(X) +L∗
(X{)

. Since K∗
(X)∩L∗

(X{)
= F ∗, it follows from Lemma 3.1 that

G∗ is the pushout of the diagram K∗
(X) ←↩ F ∗ ↪→ L∗

(X{)
. Hence G∗ = dX(G).

If G is a torsion–free group then dX(G) is a quotient divisible group, so

G∗∗ �∼= G
�∼= dX{(dX(G)) = (dX(G))∗,

and it follows that G∗ �∼= dX(G). �

This example will be generalized in the following results.

Lemma 3.12. Let X ⊆ Y be two sets of primes. If G ∈ S(X) ∩ S(Y ) then
dX(G) = dY (G).

Proof. Let F be a full free subgroup of G ∈ S(X)∩S(Y ). We consider the pushout
diagrams POX(F,KX , LX) and POY (F,KY , LY ) constructed as in Proposition 3.2.
Let Z = Y \ X and consider the subgroup F ≤ G(Z) ≤ G such that G(Z)/F =
⊕p∈Z(G/F )p. Then KY = KX + G(Z) and LX = G(Z) + LY . We note that G(Z) is
a torsion-free quotient divisible group. By Remark 3.6, (G(Z))∗ is the Arnold dual
of G(Z), so it does not matter whether we consider it as an element of A or of D.
To simplify the notation, we let M be the subgroup of (G(Z))∗ such that F ∗ ≤ M
and M/F ∗ = ⊕p∈Z(G(Z))∗p. From the construction of dX and dY it follows that
(K∗

Y )(X) = (K∗
X)(X)+M and (LX)(X{) = (L∗

Y )(X{)+M , so both dX(G) and dY (G)
are the colimit of the diagram

(F ∗ ↪→ (K∗
X)(X); F ∗ ↪→ (L∗

Y )(X{); F ∗ ↪→M),

so that dX(G) = dY (G). �

Theorem 3.13. Let X and Y be two sets of primes. If G ∈ S(X) ∩ S(Y ) then
dX(G) = dY (G).

Proof. If G ∈ S(X) ∩ S(Y ) then G ∈ S(X ∩ Y ). By Lemma 3.12 we deduce that
dX(G) = dX∩Y (G) = dY (G). �

4. Applications

Fuchs Problem 34. In [AB09] the authors prove a quasi–isomorphism criterion
for groups in S(X) which is related to Problem 34 posed in [F70].
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This result states that two groups A,B ∈ S(X) are quasi-isomorphic provided
that Q Hom(A,C) ∼= Q Hom(B,C) for all C ∈ S(X). In the theory of finitely gener-
ated modules over artinian algebras, a similar theorem was observed by Auslander
in [Aus82] and Bongartz [Bo89] found a nice simple proof for full subcategories of
abelian categories which are closed with respect direct sums and kernels. Since the
classes S(X) are not closed with respect to kernels, Bongartz’s idea is not directly
applicable to the full subcategory S(X) of the quasi–category QAb of all abelian
groups and quasi-isomorphisms. However, his idea can be applied for the dual
problem (even though S(X) is not closed with respect to cokernels):

Theorem 4.1. Let X be a set of primes and A,B ∈ S(X). The following state-
ments are equivalent:

(1) A
�∼= B.

(2) Q Hom(C,A) ∼= Q Hom(C,B)) for all groups C ∈ S(X).

Proof. It is trivial that (1) implies (2).
Conversely, assume that (2) holds. We claim that there exists a strongly essen-

tially indecomposable direct quasi-summand of A which is isomorphic to a quasi-
summand of B. Let α1, . . . , αn ∈ Hom(A,B) be a family of homomorphisms
such that 1 ⊗ α1, . . . , 1 ⊗ αn is a basis of the Q-linear space Q Hom(A,B). If
α : A → Bn is the homomorphism induced by α1, . . . , αn, we consider the exact
sequence A

α→ Bn → G → 0, where G = Bn/Im(α). Applying the contravariant
functors Q Hom(−, A) and Q Hom(−, B) we obtain the exact sequences

0→ Q Hom(G, A)→ Q Hom(Bn, A)→ Q Hom(A,A)

and
0→ Q Hom(G, B)→ Q Hom(Bn, B)→ Q Hom(A,B)→ 0,

where the latter sequence is exact on the right since Q Hom(A,B) is generated by
the 1⊗ αi described above.

We denote by D the torsion divisible subgroup of G and let K = ⊕p∈X{Gp. If
H = G/(D+K), we observe that Q Hom(G, A) = Q Hom(H,A) and Q Hom(G, B) =
Q Hom(H,B) since the torsion parts of A and B are reduced and S(A), S(B) ⊆� X.
Moreover, if F is a full free subgroup of G then F ′ = (F + (D + K))/(D + K) is a
full free subgroup of H and H/F ′ is p-divisible for almost all p ∈ X since H/F ′ is
a torsion epimorphic image of Bn.

Therefore H ∈ S(X) so

Q Hom(G, A) = Q Hom(H,A) = Q Hom(H,B) = Q Hom(G, B).

It follows that the sequence

0→ Q Hom(G, A)→ Q Hom(Bn, A)→ Q Hom(A,A)→ 0

is exact, so the sequence 0 → A
α→ Bn → G → 0 splits in the category QAb.

Therefore A is quasi-isomorphic to a quasi-direct summand of Bn. Since S(X)
is an additive Krull-Schmidt category (see [Br04]), there is an essentially strongly
indecomposable quasi-summand of A which is not torsion and is quasi-isomorphic
to a quasi-summand of B.

To complete the proof we can proceed as in the proofs of [AB09, Theorem 2.8]
and [Bo89], using induction on the torsion–free rank m of A. If m = 0 then A is
finite, and it follows that Hom(B,B) is a torsion group. This is possible only if
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B is also a finite group. Suppose that the property (2) implies (1) is valid for all
groups in S(X) of torsion–free rank < m. By what we just proved, it follows that
A

.= A1⊕A′ and B
.= B1⊕B′ with A1 and B1 quasi-isomorphic essentially strongly

indecomposable groups of torsion free rank ≥ 1.
For all C ∈ S(X), we have

Q Hom(C,A) ∼= Q Hom(C,A1)⊕Q Hom(C,A′),

Q Hom(C,B) ∼= Q Hom(C,B1)⊕Q Hom(C,B′)

and

Q Hom(C,A1) ∼= Q Hom(C,B1)

so that A′ and B′ satisfy (2).
Consequently Q Hom(C,A′) ∼= Q Hom(C,B′) for all C ∈ S(X) so by induction

A′ �∼= B′. Hence A
�∼= B. �

Now, using our duality Theorem 3.7 we can prove Theorem 2.8 from [AB09].

Theorem 4.2. Let X be a set of primes and A,B ∈ S(X). The following state-
ments are equivalent:

(1) A
�∼= B.

(2) Q Hom(A,C) ∼= Q Hom(B,C)) for all groups C ∈ S(X).

Proof. Once again, (1) implies (2) is trivial, so assume Q Hom(A,C) ∼= Q Hom(B,C))
for all groups C ∈ S(X). Then we have Q Hom(D, d(A)) ∼= Q Hom(D, d(B)) for all

groups D ∈ S(X{). Therefore by Theorem 4.1, d(A)
�∼= d(B), so A

�∼= B. �

Mixed Butler groups. We shall prove, using Theorem 3.7, a version of Butler’s
Theorem, [But65], for groups in S(X). In order to do this we use an idea from
[AW04].

Recall that the main result proved by Butler states that a torsion-free group G
is a pure subgroup of a finite rank completely decomposable group (i.e. there is an
exact sequence 0 → G → C → H → 0 in A with C a completely decomposable
group) if and only if G is an epimorphic image of a finite rank completely decom-
posable group (i.e. there is an exact sequence 0→ H → C → G→ 0 in A with C
a completely decomposable group). Moreover, it is not hard to see that the class
of Butler groups is closed with respect quasi-isomorphisms, so the exactness of the
above sequences can be replaced with quasi-exactness.

Theorem 4.3. The following are equivalent for a group G ∈ S(X):

(1) There is a quasi-exact sequence in S(X) of the form

(]) 0→ G→ ⊕m
i=1Ai → H → 0,

such that all groups Ai are of torsion-free rank 1;
(2) There is a quasi-exact sequence in S(X) of the form

([) 0→ H → ⊕m
i=1Ai → G→ 0,

such that all groups Ai are of torsion-free rank 1.
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Proof. (1)⇒ (2). Suppose that each group U involved in the short exact sequence
(]) are given by the diagrams POX [FU ,KU , LU ]. Then we obtain two quasi-exact
sequences

(]L) 0→ LG → ⊕m
i=1LAi

ϕ→ LH → 0

and

(]K) 0→ KG → ⊕m
i=1KAi

→ KH → 0.

For the exact sequence (]L) we will use the proof of Butler’s Theorem presented
in [Ri90] to observe that Ker(ϕ) is an epimorphic image of a finite direct sum
⊕Bi where all Bi are rank 1 subgroups of ⊕m

i=1LAi
. Since type(LAi

) is 0 on every
component which corresponds to a prime p ∈ X, the types of groups Bi have the
same property. Therefore all groups Bi and Ker(α) are in S(X). Since LG

�= Ker(ϕ)
we can replace α by an integral multiple of it such that Im(α) ⊆ LG, so we have a
quasi-epimorphism α : ⊕Bi → LG.

For the exact sequence (]K), a careful analysis of the proof of [AW04, Theorem
8] shows that there is a quasi-epimorphism β : ⊕Cj → KK such that each Cj is
a finite direct sum of torsion–free rank 1 quotient divisible groups Ci ∈ S(X) and
Ker(β) ∈ S(X). For the reader’s convenience we give here the details for this proof:
We apply the functor dX = (−)∗ to the exact sequence ]K to obtain a quasi-exact
sequence

(]∗K) 0→ K∗
H → ⊕m

i=1K
∗
Ai
→ K∗

G → 0.

In this sequence all groups are X{-divisible torsion-free groups and all groups K∗
Ai

are of rank 1. Therefore K∗
G is a Butler group, and it follows that there is an exact

sequence

0→ K∗
G → ⊕m

i=1Ui → V → 0.

of X{-divisible torsion-free groups with all groups Ui of rank 1. Now, applying the
functor (−)∗ = dX{ we obtain a quasi-exact sequence

0→ V ∗ → ⊕m
i=1U

∗
i → K∗∗

G → 0.

with all groups quotient divisible groups in S(X), and the existence of β is proved.
Let δ : (⊕Bi) ⊕ (⊕Cj) → G be the homomorphism induced by α and β. Since

G = KG + LG, it follows that δ is a quasi-epimorphism. To complete the proof,
we need to prove that Ker(δ) ∈ S(X). By Corollary 2.2, it is enough to prove that
Ker(δ)/(Ker(α)⊕Ker(β)) is finitely generated.

Let F1 ≤ ⊕Bi and F2 ≤ ⊕Cj be finitely generated free subgroups such that such
that α−1(FG) = Ker(α)⊕ F1 and β−1(FG) = Ker(β)⊕ F2. Let x = b + c ∈ Ker(δ)
with b ∈ ⊕Bi and c ∈ ⊕Cj . Since α(b) + β(c) = 0, α(b) = β(−c) ∈ FG. Then
b ∈ α−1(FG) = Ker(α) ⊕ F1, where F1 is a finitely generated free subgroup of
⊕Bi. In the same way we deduce that c ∈ Ker(β) ⊕ F2. Note that F1 and F2

are independent of x, b and c so Ker(δ) ⊆ (Ker(α) ⊕ Ker(β)) + (F1 ⊕ F2). Then
Ker(δ)/Ker(α)⊕Ker(β) is finitely generated, and it follows that Ker(δ) ∈ S(X).

(2) ⇒ (1) We apply the functor d to the quasi-exact sequence ([) to obtain a
quasi-exact sequence

(d([)) 0→ d(G)→ ⊕m
i=1d(Ai)→ d(H)→ 0
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in S(X{). Applying the implication (1)⇒ (2) we observe that there exists a quasi-
exact sequence

0→ H ′ → ⊕m
i=1A

′
i → d(G)→ 0

in S(X{). Applying again the duality d we obtain the required short quasi-exact
sequence. �
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