A REFORMULATION OF BROWN REPRESENTABILITY THEOREM

SIMION BREAZ, GEORGE CIPRIAN MODOI

ABSTRACT. A well–known result says: If a triangulated category with small coproducts satisfies Brown Representability Theorem, then every triangulated coproduct preserving functor having as domain the respective category has a right adjoint. We wonder about the converse. In the paper we provide a reformulation of Brown Representability Theorem which has some similarities with that converse.

Introduction

In the present note we outline a reformulation of Brown Representability Theorem. This result is a central piece in the theory of triangulated categories (see [2] or [4]). Consider a triangulated category \mathcal{T} which has small coproducts, that is coproducts indexed over small sets. Brown Representability Theorem deals with contravariant functors $\mathcal{T} \to \mathcal{A}b$, where $\mathcal{A}b$ is the category of abelian groups, and says that such a functor is representable provided that it is cohomogical and sends coproducts into products. We consider the so called *abelianization* of \mathcal{T} , namely the abelian category $\operatorname{mod}(T)$, which satisfies the following universal property: Every cohomological functor $\mathcal{T} \to \mathcal{A}$, into an abelian category, extends uniquely to an exact functor $\text{mod}(\mathcal{T}) \to \mathcal{A}$. Using this property we reformulate Brown Representability Theorem in terms of $mod(\mathcal{T})$ and exact functors starting from $\operatorname{mod}(\mathcal{T})$. More precisely \mathcal{T} satisfies Brown Representability Theorem if and only if every exact coproduct preserving functor $\operatorname{mod}(\mathcal{T}) \to \mathcal{A}$, where \mathcal{A} is abelian AB3 and has enough injectives, has a right adjoint. In this way we obtain also some indications how far we are in order to prove (or most probably to disprove) the converse of the well-known result saying that if Tsatisfies Brown Representability Theorem then every triangulated coproduct preserving functor starting from \mathcal{T} has a right adjoint. The point is the following question: Given an exact functor $\operatorname{mod}(\mathcal{T}) \to \mathcal{A}$, how can it be lifted, in a natural way, to a triangulated functor starting on \mathcal{T} ?

For the undefined notions concerning triangulated categories we refer to [4], and for abelian categories to [1] or [5]. For general theory of categories may be also consulted [3].

²⁰⁰⁰ Mathematics Subject Classification. 18E15, 18E35, 18A40.

The authors were supported by the grant PN2CD-ID-489.

1. The results

Consider an additive category \mathcal{T} . By a right module over \mathcal{T} (for shortly \mathcal{T} -module) we understand a contravariant functor $\mathcal{T} \to \mathcal{A}b$. Dually a left module over \mathcal{T} (or $\mathcal{T}^{\mathrm{op}}$ -module) is a covariant functor $\mathcal{T} \to \mathcal{A}b$. The class of all \mathcal{T} -module forms an abelian AB5 category, the morphisms being natural transformations, category which is denoted here by $\mathrm{Mod}(\mathcal{T})$. Note that the limits and colimits in $\mathrm{Mod}(\mathcal{T})$ are computed point-wise. Usually, this category has no small Hom-sets (another way to say this, is that $\mathrm{Mod}(\mathcal{T})$ lives in a higher universe that \mathcal{T}), unless \mathcal{T} is essentially small (i.e. it has a small skeleton). Sometimes it is useful to restrict us to the full subcategory $\mathrm{mod}(\mathcal{T})$ of $\mathrm{Mod}(\mathcal{T})$, consisting of those \mathcal{T} -modules \mathcal{X} which are finitely presented, that is, there is an exact sequence

$$\mathcal{T}(-,y) \to \mathcal{T}(-,z) \to X \to 0,$$

with $y, z \in \mathcal{T}$. This last category has small Hom-sets, provided that \mathcal{T} does, as we may see by Yoneda lemma. The Yoneda embedding

$$\mathcal{T} \to \operatorname{Mod}(\mathcal{T}), \ x \mapsto \mathcal{T}(-, x)$$

restricts to a well defined fully faithful functor

$$H = H_{\mathcal{T}} : \mathcal{T} \to \operatorname{mod}(\mathcal{T}), \ H(x) = \mathcal{T}(-, x),$$

called also Yoneda functor, or Yoneda embedding (we will omit the index \mathcal{T} if no confusion is possible). Define also $mop(\mathcal{T}) = mod(\mathcal{T}^{op})^{op}$, and denote

$$H' = H'_{\mathcal{T}} : \mathcal{T} \to \text{mop}(\mathcal{T}), \ H'(x) = \mathcal{T}(x, -).$$

For the sake of clarity, from now on, we will denote by $\mathcal{T}(x,-)$ the respective (projective) object of $\operatorname{mod}(\mathcal{T}^{\operatorname{op}})$ and by H'(x) the same (injective) object viewed in $\operatorname{mop}(\mathcal{T})$. It is well-known, that $\operatorname{mod}(\mathcal{T})$ (respectively $\operatorname{mop}(\mathcal{T})$) is an additive finitely cocomplete (complete) category with enough projectives (injectives), and any functor $f:\mathcal{T}\to\mathcal{A}$, into an additive finitely cocomplete (complete) category, extends uniquely, up to a natural isomorphism, to a cokernel (kernel) preserving functor

$$\hat{f}: \operatorname{mod}(\mathcal{T}) \to \mathcal{A} \quad (\check{f}: \operatorname{mop}(\mathcal{T}) \to \mathcal{A}),$$

such that $f \cong \hat{f} \circ H$ ($f \cong \check{f} \circ H'$). Note that for us, the category \mathcal{A} will be always abelian. Obviously, H commutes with products, and H' commutes with coproducts which exists in \mathcal{T} . If, in addition, \mathcal{T} has small coproducts (products) then $\operatorname{mod}(\mathcal{T})$ ($\operatorname{mop}(\mathcal{T})$) has also small coproducts (products), and the embedding H (H') commutes with coproducts (products). If this is the case, the a functor $f: \mathcal{T} \to \mathcal{A}$ preserves coproducts (products) if and only if the induced functor \hat{f} (respectively \check{f}) does it. Finally recall that $\operatorname{mod}(\mathcal{T})$ ($\operatorname{mop}(\mathcal{T})$) is abelian, provided that \mathcal{T} has weak–kernels (weak–cokernels).

From now on, the category \mathcal{T} is triangulated, with small coproducts. Recall that, a functor $f: \mathcal{T} \to \mathcal{A}$, into an abelian category \mathcal{A} , is called homological (respectively cohomological) if it is covariant (contravariant) and sends triangles into long exact sequences. Since \mathcal{T} has both weak-kernels and weak-cokernels $\operatorname{mod}(\mathcal{T})$ and $\operatorname{mop}(\mathcal{T})$ are both abelian. Moreover for a functor $f: \mathcal{T} \to \mathcal{A}$, into an abelian category \mathcal{A} , the induced functor $\hat{f}: \operatorname{mod}(\mathcal{T}) \to \mathcal{A}$ ($\check{f}: \operatorname{mop}(\mathcal{T}) \to \mathcal{A}$) is exact if and only if f is homological.

Recall that a functor $f: \mathcal{T} \to \mathcal{T}'$ between two triangulated categories is called triangulated or exact if it sends triangles into triangles (this implies it should commute with "shifts"). If \mathcal{T} and \mathcal{T}' are triangulated categories, and $f: \mathcal{T} \to \mathcal{T}'$ is an exact functor, then $H_{\mathcal{T}'} \circ f$ is homological, so it induces a unique, up to isomorphism, exact functor $f^*: \operatorname{mod}(\mathcal{T}) \to \operatorname{mod}(\mathcal{T}')$, such that $H_{\mathcal{T}'} \circ f \cong f^* \circ H_{\mathcal{T}}$. The duality functor $\mathcal{T} \to \mathcal{T}^{\operatorname{op}}$ is (contravariant) exact, so it induces as before a unique (contravariant) functor $\operatorname{mod}(\mathcal{T}) \to \operatorname{mod}(\mathcal{T}^{\operatorname{op}})$, which is not hard to see that is a duality. Therefore we obtain an equivalence of categories $E: \operatorname{mod}(\mathcal{T}) \to \operatorname{mop}(\mathcal{T})$, such that $E \circ H \cong H'$.

We call an abelian category \mathcal{A} admissible if it is AB3 and has enough injectives. It is well–known that such a category must be also AB4.

Theorem 1.1. The following are equivalent, for a triangulated category with arbitrary coproducts \mathcal{T} :

- (i) T satisfies the Brown representability theorem.
- (ii) For every homological, coproducts preserving functor $f: \mathcal{T} \to \mathcal{A}$, into an admissible abelian category \mathcal{A} , the induced functor

$$\hat{f}: \operatorname{mod}(\mathcal{T}) \to \mathcal{A}$$

has a right adjoint.

- (iii) Every exact, coproducts preserving functor $F : \text{mod}(\mathcal{T}) \to \mathcal{A}$, into an admissible, abelian category \mathcal{A} , has a right adjoint.
- (iv) Every exact, coproducts preserving functor $F : mod(\mathcal{T}) \to \mathcal{A}b^{op}$ has a right adjoint.

Proof. (i) \Rightarrow (ii). Let $f: \mathcal{T} \to \mathcal{A}$ be a homological functor into an abelian, admissible category \mathcal{A} . Let $I \in \mathcal{A}$ be an injective object. Then the functor

$$\mathcal{A}(f(-),I) = \mathcal{A}(-,I) \circ f : \mathcal{T} \to \mathcal{A}b$$

is cohomological, and sends coproducts into products. Then it is representable, by Brown representability theorem; so there is a unique, up to a natural isomorphism, $x_I \in \mathcal{T}$, such that $\mathcal{A}(f(-),I) \cong \mathcal{T}(-,x_I)$. Since \mathcal{A} has enough injectives, the assignment $I \mapsto H(x_I)$ defines a unique, up to isomorphism, left exact functor $G : \mathcal{A} \to \operatorname{mod}(\mathcal{T})$. It is directly verified that G is the right adjoint of \hat{f} .

- $(ii)\Rightarrow(iii)$ is obvious, since, under the assumptions of (iii), we have $F\cong \widehat{F\circ H}$.
 - (iii) \Rightarrow (iv) follows immediately since $\mathcal{A}b^{\mathrm{op}}$ is admissible.
- (vi) \Rightarrow (i). Let $f: \mathcal{T} \to \mathcal{A}b$ be a cohomological functor, sending coproducts into products. Then the functor

$$F: \operatorname{mod}(\mathcal{T}) \to \mathcal{A}b^{\operatorname{op}}, \ F(X) = \operatorname{mod}(\mathcal{T})(X, f)$$

is exact, coproducts preserving (actually F is the composition of \widehat{f} with the duality functor of $\mathcal{A}b$). By hypothesis, F has a right adjoint $G: \mathcal{A}b^{\mathrm{op}} \to \mathrm{mod}(\mathcal{T})$. We deduce $F(X) \cong \mathrm{mod}(\mathcal{T})(X,G(\mathbb{Z}))$. Further $f \cong G(\mathbb{Z})$, showing that $f \in \mathrm{mod}(\mathcal{T})$ and f has to be injective, since it represents the exact functor F. Therefore, $f \cong \mathcal{T}(-,x)$, for some $x \in \mathcal{T}$.

We record also the dual of the preceding results (for this, we will say that the abelian category \mathcal{A} is *co-admissible* if \mathcal{A}^{op} is admissible):

Theorem 1.2. The following are equivalent, for a triangulated category with arbitrary products \mathcal{T} :

- (i) \mathcal{T}^{op} satisfies the Brown representability theorem.
- (ii) For every homological, products preserving functor $f: \mathcal{T} \to \mathcal{A}$, into a co-admissible, abelian category \mathcal{A} , the induced functor

$$\check{f}: \operatorname{mop}(\mathcal{T}) \to \mathcal{A}$$

has a left adjoint.

- (iii) Every exact, products preserving functor $F : mop(\mathcal{T}) \to \mathcal{A}$, into a co-admissible, abelian category \mathcal{A} , has a left adjoint.
- (iv) Every exact, products preserving functor $F: mop(\mathcal{T}) \to \mathcal{A}b$ has a left adjoint.

Remark 1.3. Since, for a triangulated category \mathcal{T} , we have an equivalence of categories $E: \operatorname{mod}(\mathcal{T}) \to \operatorname{mop}(\mathcal{T})$, such that $E \circ H = H'$, we may freely interchange $\operatorname{mod}(\mathcal{T})$ and $\operatorname{mop}(\mathcal{T})$ in Theorems 1.1 and 1.2.

Remark 1.4. Consider a triangulated category, with arbitrary coproducts (products) \mathcal{T} . Theorems 1.1 and 1.2 provide reformulations of the Brown representability theorem for \mathcal{T} respectively $\mathcal{T}^{\mathrm{op}}$ in terms of abelian category $\mathrm{mod}(\mathcal{T})$. Note also, Brown Representability Theorem for \mathcal{T} implies every triangulated coproduct preserving functor $f: \mathcal{T} \to \mathcal{T}'$, into another triangulated category \mathcal{T}' has a right adjoint. Therefore the above reformulation has some similarities with the converse of that implication, namely \mathcal{T} satisfies Brown Representability Theorem if and only if every exact coproduct preserving functor $\mathrm{mod}(\mathcal{T}) \to \mathcal{A}$, into an admissible abelian category \mathcal{A} has a right adjoint.

References

- [1] P. Gabriel, De catégories abeliennes, Bull. Soc. Math. France, 90(1962) 323-448.
- [2] H. Krause, A Brown representability theorem via coherent functors, Topology, 41(2002), 853-561.
- [3] B. Mitchell, Theory of Categories, Academic Press, New York and London, 1965.
- [4] A. Neeman, Triangulated Categories, Annals of Mathematics Studies, 148, Princeton University Press, Princeton, NJ, 2001.
- [5] N. Popescu, L. Popescu, Theory of Categories, Editura Academiei, Bucureşti and Sijthoff & Noordhoff International Publishers, 1979.

"Babeş-Bolyai" University, RO-400084, Cluj-Napoca, Romania E-mail address, Simion Breaz: bodo@math.ubbcluj.ro E-mail address, George Ciprian Modoi: cmodoi@math.ubbcluj.ro