
COMMUTATIVITY CRITERIONS
USING NORMAL SUBGROUP LATTICES

SIMION BREAZ

Abstract. We prove that a group G is Abelian whenever (1) it is
nilpotent and the lattice of normal subgroups of G is isomorphic to the
subgroup lattice of an Abelian group or (2) there exists a non-torsion
Abelian group B such that the normal subgroup lattice of B × G is
isomorphic to the subgroup lattice of an Abelian group. Using (2), it
is proved that an Abelian group A can be determined in the class of
all groups by the lattice of all normal subgroups of some groups, e.g. if
A is an Abelian group and G is a group such that Z × A and Z × G
have isomorphic normal subgroup lattices then A and G are isomorphic
groups.

1. Introduction

If G is a group, we will denote by L(G) the lattice of all subgroups of
G and by N (G) the lattice of all normal subgroups of G. It is well known
that there are many important properties of a group G which cannot be
recovered from properties of L(G) or N (G). One of the simplest example
is the following: G is a simple group if and only if N (G) is a chain with
2 elements, so if we have a group G with such a normal subgroup lattice
we cannot say if G is Abelian. However, there exist Abelian groups A such
that it is possible to deduce G ∼= A from the existence of an isomorphism
N (G) ∼= N (A), by the works of Curzio, [4], and Brandl, [2]. Moreover, it is
proved in [9] and [3] that subgroup lattices can be used to conclude that G
is Abelian: if L(G×G) or L(Z×G) are modular lattices then G is Abelian.
In particular, if L(G × G) ∼= L(A) or L(Z × G) ∼= L(A) for some Abelian
group A then G is an Abelian group. A natural question is if we can replace
in these results the subgroup lattice with the normal subgroup lattice.

First we observe that this transfer cannot be done in all cases. For
example, if G is a non-abelian simple group, then it is superperfect (i.e.
[N,G] = N for all N E G). Then [10, Theorem 1] shows that N (G×G) ∼=
{1 < G}× {1 < G} ∼= N (Z/2Z ×Z/3Z) (direct products of two chains with
two elements).

In this paper we will prove that some criterions for the commutativity
of a group G can be stated using normal subgroup lattices (Theorem 2
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and Theorem 6): A group G is Abelian if and only if one of the following
conditions are satisfied:
(1) N (G) ∼= N (A) for an Abelian group A and G is nilpotent;
(2) N (B × G) ∼= N (A) for some Abelian groups B and A such that B is

not a torsion group.
In the end of the paper we will discuss cancellation properties which can

be deduced from (2).

2. Direct products

If Gi, i ∈ I, is a family of groups, we will denote by
∏<ω

i∈I Gi the restricted
direct product of this family, i.e. the subgroup of all elements with finite
support of the cartesian product

∏
i∈I Gi (see [8, pp.118–119]). If all Gi are

Abelian then
∏<ω

i∈I Gi is denoted by ⊕i∈IGi, and it is called the direct sum
of the family Gi, i ∈ I. We note that, in order to simplify the exposition, we
will identify every group Gi with the corresponding subgroup of

∏<ω
i∈I Gi.

A well known theorem of Suzuki [12, Theorem 1.6.5] says us that the
subgroup lattice L(G) of a group G is a direct product of a family of lattices
if and only if G =

∏<ω
i∈I Gi such that the groups Gi, i ∈ I, are coprime, i.e.

every Gi is a torsion group and gcd(o(gi), o(gj)) = 1 for all i 6= j, gi ∈ Gi

and gj ∈ Gj (here o(g) denotes the order of the element g). There exists a
version of this theorem for normal subgroup lattices. It was proved for the
case I is finite by Miller in [10, Theorem 2]. The hypothesis “I is finite”
is not essential in Millers’s proof. However, for reader’s convenience, we
include a proof of this theorem. In order to enunciate it, let us recall that a
group G is superperfect if [N,G] = N for every normal subgroup N of G.

Theorem 1. Let G be a group. The normal subgroup lattice of G has a
direct decomposition N (G) =

∏
i∈I Li if and only if G =

∏<ω
i∈I Gi such that

(a) at most one of the groups Gi is not superperfect
or
(b) for every family of normal subgroups Hi E Gi, the groups Hi/[Hi, Gi],

i ∈ I, are coprime.
In this case N (Gi) = Li for all i ∈ I.

Proof. Suppose that N (G) =
∏

i∈I Li. For every j ∈ I we denote by 0j

and 1j the least, respectively the greatest, element of Li. We denote by
1j = (`i)i ∈ N (G) the element defined by conditions `i = 0i for all i 6= j and
`j = 1j . For every j ∈ I we consider the normal subgroups Gj of G which
correspond to 1j . Then for every j 6= k ∈ I the normal subgroups Gj and
Gk centralize each other since Gj ∩ Gk = {1}. Moreover, for every j ∈ I

we have G = Gj〈
⋃

i6=j Gi〉 and Gj ∩ 〈
⋃

i6=j Gi〉 = {1}, hence G =
∏<ω

i∈I Gi.
Moreover, since N (G) =

∏
i∈I N (Gi), it follows that every normal subgroup

N of G is a direct product of normal subgroups Ni of the groups Gi.
Suppose that there exists j 6= k in I such that Gj and Gk are not super-

perfect groups. Then there are normal subgroups Hj EGj and Hk EGk such
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that Hj 6= [Hj , Gj ] and Hk 6= [Hk, Gk]. If the Abelian groups Hj/[Hj , Gj ]
and Hk/[Hk, Gk] are not coprime then, by Suzuki’s Theorem, there exists a
subgroup

N ≤ Hj/[Hj , Gj ]×Hk/[Hk, Gk]
which is not a direct product of type Kj ×Kk with Kj ≤ Hj/[Hj , Gj ] and
Kk ≤ Hk/[Hk, Gk]. Then the subgroup N ≤ Hj ×Hk, which is determined
by the properties [Hj , Gj ]× [Hk, Gk] ≤ N and N = N/([Hj , Gj ]× [Hk, Gk]),
is not a direct product of type Kj × Kk with Kj ≤ Hj and Kk ≤ Hk, a
contradiction.

Conversely, let N be a normal subgroup of G, and Ni = πi(N)EGi, where
πi : G → Gi are the canonical projections, for all i ∈ I. Then∏<ω

i∈I [Ni, Gi] ≤ N ≤
∏<ω

i∈I Ni.

If we are under the hypothesis (a), so there exists j ∈ I such that all groups
Gi (i 6= j) are superperfect, then N = Nj ×

∏<ω
i6=j Ni. If the hypothesis

(b) is satisfied, then we can apply again Suzuki’s Theorem to observe that
N/

∏<ω
i∈I [Ni, Gi] =

∏<ω
i∈I Ki/[Ni, Gi] for some normal subgroups Ki E Ni,

hence N =
∏<ω

i∈I Ki, and the proof is complete. �

3. Commutativity criterions

Using Theorem 1, we can prove a criterion for the commutativity of a
nilpotent group.

Theorem 2. A nilpotent group G is Abelian if and only if there exists an
abelian group A such that N (G) ∼= N (A).

Proof. Let ϕ : N (G) → N (A) be an isomorphism.
Suppose that G is not abelian. Then, by [12, Theorems 9.1.12, 9.1.14], A

is a torsion group. We decompose A as a direct sum of its p-components:
A =

⊕
p Ap. Then G =

∏<ω
p ϕ−1(Ap), as a consequence of Theorem 1. It

follows that there exists a prime p such that Gp = ϕ−1(Ap) is not Abelian.
Therefore we can suppose that A is a p-group. Using [12, Theorem 9.1.11],

we observe that A is locally cyclic, hence its subgroup lattice is a chain by [5,
Theorem 3.1]. Therefore N (G) = {1 < N1 < · · · < Nk < . . . }. Let c ∈ N be
the nilpotency class of G. Since G is not Abelian, c ≥ 2. If Zi, i ∈ {0, . . . c},
denotes the terms of the upper central series of G, then there exists k such
that Zc−1 = Nk. Hence in the group H = G/Zc−2, we have the properties:
Z(H) = Zc−1/Zc−2, and H/Z(H) is abelian. Moreover, every subgroup of
H/Z(H) is of the form (N/Zc−2)/Z(H), with N normal in G. Hence the
subgroup lattice of the Abelian group H/Z(H) is a chain, hence H/Z(H) is
a union of an ascending chain of cyclic subgroups (see [5, Section 3]).

If x, y ∈ H then there exists u ∈ H such that xZ(H), yZ(H) ∈ 〈uZ(H)〉.
Therefore x = ukv and y = u`z for some integers k and ` and some elements
v, z ∈ Z(H). Then xy = uk+`vz = yx, hence H is abelian. It follows that
Zc−1 = G, a contradiction. Therefore G is abelian. �
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Example 3. The previous result is not valid for solvable groups, since the
lattices N (S3) and N (Z/22Z) are chains with 3 elements, hence they are
isomorphic.

Corollary 4. If G is a finite p-group such that N (G) ∼= N (A) for some
Abelian group A, then G is Abelian.

Remark 5. a) Corollary 4 does not work for subgroup lattices of finite p-
groups, as a consequence of [12, Theorem 2.5.9].

b) Since there exists infinite simple p-groups, Corollary 4 is not valid for
general p-groups.

However, we can enunciate a result which is valid for all groups.

Theorem 6. Let B be an Abelian group which is not a torsion group. A
group G is Abelian if and only if there exists an abelian group A such that
N (B ×G) ∼= N (A).

Proof. Let ϕ : N (B×G) ∼= N (A) be an isomorphism. Since every subgroup
of B is normal in B × G, the restriction of ϕ to B induces a projectivity
from B onto ϕ(B) (i.e. ϕ|L(B) : L(B) → L(ϕ(B)) is an isomorphism). Then
L(ϕ(B)) is not an atomic lattice (i.e. there exists an element which is not
minimized by an atom), hence ϕ(B) is not a torsion group. Therefore, A is
not a torsion group.

If the torsion-free rank of A is > 1 then A ∼= B ×G as a consequence of
[12, Theorem 9.1.12].

If A is of torsion-free rank 1, using the direct decomposition A = ϕ(B)×
ϕ(G), we observe that ϕ(G) is a torsion group. For every element x ∈
A of infinite order we know that 〈x〉 and the torsion part T (A) of A are
disjoint (normal) subgroups of A. Hence ϕ−1(〈x〉) and G are disjoint normal
subgroups of B × G, and it follows that G is a subgroup of the centralizer
of ϕ−1(〈x〉) for all x ∈ A \ T (A). Therefore, G is contained in the center of
B ×G, since

B ×G = ϕ−1(A) = ϕ−1(∨x∈A\T (A)〈x〉) = ∨x∈A\T (A)ϕ
−1(〈x〉),

hence G is Abelian. �

Example 7. The hypothesis “B is not a torsion group” is essential in the
previous theorem.

Proof. Let B = Z/5Z and G = S3. Using Theorem 1 we deduce that

N (B ×G) ∼= N (B)×N (G) = {0 < B} × {1 < A3 < S3}.
But this lattice is isomorphic to the subgroup lattice of Z/5Z× Z/22Z. �

Remark 8. As a consequence of [12, Theorem 9.1.11], the property stated
in the previous theorem is valid if we assume that all involved groups are
p-groups.

However, if only B 6= 1 and G are p-groups the property is not valid. To
see this, it is enough to consider B = Z/pZ, G an infinite simple p-group and
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A = Z/pZ× Z/qZ (where q 6= p are prime integers), and to apply Theorem
1.

It is proved in [3] that every abelian group is determined in the class of
all groups by some subgroup lattices. As a consequence of Theorem 6, we
obtain similar results for normal subgroup lattices.

Corollary 9. Let G be a group.
a) If B 6= 1 is a torsion-free Abelian group, and T is a torsion Abelian

group such that N (B × T ) ∼= N (B ×G), then T ∼= G.
b) If A is an Abelian group and B 6= 1 is a finite rank torsion-free Abelian

group such that N (B ×A) ∼= N (B ×G), then there exists a positive integer
n such that An ∼= Gn.

c) If A is an Abelian group and N (Z×A) ∼= N (Z×G) then A ∼= G.
d) If A is an Abelian group and N (Q×A) ∼= N (Q×G) then A ∼= G.

Proof. We know that G is Abelian by Theorem 6.
For a) we apply [12, Theorem 2.6.10 and Theorem 2.6.15].
For b) we use a) and [12, Theorem 2.6.10] to deduce B × A ∼= B × G.

Then we apply the “power cancellation property” proved by Goodearl in [6,
Theorem 5.1].

The proofs for c) and d) are similar, using this time the fact that Z and
Q are cancellable from direct products of Abelian groups (see [1, Corollary
8.8]). �

Remark 10. As a consequence of [13, Theorem 13], there exist non-isomorphic
groups G and H such that Z × G ∼= Z × H. Then Corollary 9 c) cannot
be extended to general groups. However, if Z × G ∼= Z × H for some non-
isomorphic groups G and H, these groups must be infinite, as a consequence
of [13, Theorem 11], so a natural question is if we can extend Corollary 9 to
non-Abelian finite groups.

The answer for this question is negative, and it is based on a (nega-
tive) solution which was found by Kearnes and Szendrei [7] for the problem
formulated in [11]: “can we deduce G ∼= H from L(Gn) ∼= L(Hn) for all
n ≥ 1?”.

To present this answer, let us recall that two groups (G, ·) and (G, ◦),
defined on the same set G, are term equivalent if they have the same term
functions. Consequently, if (G, ·) and (G, ◦) are term equivalent groups then

(T1) they have the same identity, and
(T2) the operations · and ◦ are term operations with respect to ◦ and ·,

respectively.
We recall that a term operation with respect to · is a function

G×G → G, (x, y) 7→ T (x, y) = xm1 · yn1 · · ·xm` · yn` for all x, y ∈ G,

where T = Xm1Y n1 · · ·Xm`Y n` is a binary term (mi, ni ∈ Z for all i).
The proof of the following lemma is included in the proof of [7, Lemma

2.4].
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Lemma 11. Let (G, ·) be a group and T a binary term. If the pair (G, ◦),
where x ◦ y = T (x, y), is a group with the same identity as (G, ·) then there
exist r1, . . . , rk ∈ Z, s1, . . . , sk ∈ Z and ε1, . . . , εk ∈ {±1} such that

(]) T (x, y) = xy[xr1 , ys1 ]ε1 . . . [xrk , ysk ]εk

for all x, y ∈ G (here [a, b] = aba−1b−1).

Proof. There exist integers m1, . . . ,mk, n1, . . . , nk such that we can write
T (x, y) = xyxm1yn1 · · ·xmkynk for all x, y ∈ G. From T (x, 1) = x, respec-
tively T (1, y) = y, for all x, y ∈ G, we deduce

xm1+···+mk = yn1+···+nk = 1.

Moreover, for all x, y ∈ G we have

T (x, y) = xyxm1yn1 · · ·xmkynk

= xy[xm1 , yn1 ]yn1xm1+m2yn2 · · ·xmkynk = · · ·
= xy[xm1 , yn1 ][xm1+m2 , yn1 ]−1xm1+m2yn1+n2 · · · ,

and so on, hence the function T (x, y) has the form (]). �

Remark 12. If G = (G, ·) and H = (G, ◦) are groups as in Lemma 11, then
for every x ∈ G, its inverse x−1 in G is the inverse of x in H. Therefore, to
prove that two groups G = (G, ·) and H = (G, ◦) are term equivalent, it is
enough to prove that they satisfy the conditions (T1) and (T2).

Corollary 13. If G = (G, ·) and H = (G, ◦) are term equivalent groups,
then Z×G and Z×H are term equivalent groups.

Proof. By Lemma 11, there is a binary term

T = XY [Xr1 , Y s1 ]ε1 · · · [Xrk , Y sk ]εk

with r1, . . . , rk ∈ Z, s1, . . . , sk ∈ Z and ε1, . . . , εk ∈ {±1} such that the
operation ◦ is the term function induced by T .

If we consider the term function induced by T on Z×G we observe that
T ((m,x), (n, y)) = (m + n, x ◦ y) for all m,n ∈ Z and x, y ∈ G. Then the
operation on Z × H is a term operation on the set Z × G with respect to
the operation of the group Z × G. By symmetry, the operation on Z × G
is also a term operation with respect to the operation of Z × H. It is not
hard to see that the identities of the groups Z×G and Z×H are the same.
Therefore, the groups Z×G and Z×H are term equivalent. �

Corollary 14. There exist non-isomorphic finite groups G and H such that
the lattices N (Z×G) and N (Z×H) are isomorphic.

Proof. By [7, Example 2.14], there exist non-isomorphic term equivalent
finite groups G and H. Then Z × G and Z × H are non-isomorphic term
equivalent groups. Applying [7, Lemma 2.6], we obtain N (Z×G) = N (Z×
H). �
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