QUASI-ISOMORPHISMS AND GROUPS OF QUASI-HOMOMORPHISMS

ULRICH ALBRECHT AND SIMION BREAZ

ABSTRACT. This paper investigates to which extent a self-small mixed Abelian group G of finite torsion-free rank is determined by the groups $\operatorname{Hom}(G, C)$ where C is chosen from a suitable class C of Abelian groups. We show that G is determined up to quasi-isomorphism if C is the class of all self-small mixed groups C with $r_0(C) \leq r_0(G)$. Several related results are given, and the dual problem of orthogonal classes is investigated.

1. INTRODUCTION

Problem 34 in [8] asks whether it is possible to find a set \mathcal{C} of Abelian groups with the property that two Abelian groups A and B are isomorphic provided that $\operatorname{Hom}(A, C) \cong \operatorname{Hom}(B, C)$ for all $C \in \mathcal{C}$. The negative answer given in [3] raised the question to identify properties of Abelian groups which are determined by $\operatorname{Hom}(-, C)$ when C is chosen from a class \mathcal{C} . For instance, if A is a reduced pgroup, and \mathcal{C} is the class of all p-groups, then the groups $\{\operatorname{Hom}(A, C) | C \in \mathcal{C}\}$ determine the finite Ulm-Kaplansky invariants $f_n(A)$ of A, but do not affect $f_{\sigma}(A)$ for $\sigma \geq \omega$ [1]. On the other hand, if \mathcal{C} is the class of torsion-free groups of finite rank, then the invariants $\{r_0(\operatorname{Hom}(A, C) | C \in \mathcal{C}\}$ determine a group $A \in \mathcal{C}$ up to quasi-isomorphism, but not necessarily up to isomorphism [3].

The results in [1] also addressed the question if there are classes of mixed groups which are determined up to isomorphism by homomorphism groups. For instance, two groups A and B in \mathcal{G} are isomorphic if $\operatorname{Hom}(A, G) \cong \operatorname{Hom}(B, G)$ for all $G \in \mathcal{G}$. Here, \mathcal{G} is the class of all self-small groups of finite torsion-free rank G such that G/T(G) is divisible where T(G) denotes the torsion subgroup of G. Self-small groups were introduced by Arnold and Murley in [6] as the groups A with the property that $\operatorname{Hom}(A, A^{(I)})$ and $\operatorname{Hom}(A, A)^{(I)}$ are canonically isomorphic for all index-sets I. Although the class \mathcal{S} of all self-small groups of finite torsion-free rank is closed with respect direct summands and endomorphic images [6], it is not closed with respect direct sums [2]. Further information on self-small groups can be found in [7].

Theorem 2.8 shows that a group $A \in S$ is determined up to quasi-isomorphism by the torsion-free rank of the groups Hom(A, C) where $C \in S$ (and $r_0(C) \leq r_0(A)$). Moreover, groups $A \in S$ with $r_0(A) = 1$ are determined up to isomorphism in this way. However, this fails in general (Example 2.10).

Section 3 addresses a question closely related to Problem 34: Given a self-small group A, can we find a set \mathcal{C} containing A and a property P such that A is determined up to isomorphism by $\text{Ker}(\mathbb{Q}\text{Hom}(A, -)) \cap \mathcal{C}$ and P? Annihilator classes like

²⁰⁰⁰ Mathematics Subject Classification. 20K25(20K21).

S. Breaz is supported by the grant PN2CD-ID489.

these were first considered by Schultz in [11]; and Wickless solved a dual problem in [13]. Theorem 3.4 gives an answer for some natural arising classes of self-small groups.

For the benefit of the reader, we give a short summary of the notation used. If A is a group, then the symbol $T_p(A)$ indicates the p-component of A, and \overline{A} = A/T(A). The endomorphism ring of A is E = E(A). There exists an adjoint pair (H_A, T_A) of functors between the category of abelian groups and the category of right E-modules defined by $H_A(G) = Hom(A,G)$ and $T_A(M) = M \otimes_E A$ for all abelian groups A and all right E-modules M. These functors induce natural maps $\theta_G : \mathrm{T}_A \mathrm{H}_A(G) \to G \text{ and } \Phi_M : M \to \mathrm{H}_A \mathrm{T}_A(M) \text{ defined by } \theta_G(\alpha \otimes a) = \alpha(a) \text{ and}$ $[\Phi_M(x)](a) = x \otimes a$ for all $a \in A, x \in M$, and $\alpha \in H_A(G)$. The A-socle of G, denoted by $S_A(G)$, is the image of θ_G . If \mathcal{C} is a class of groups, then a group G is (finitely) \mathcal{C} -generated if it is an epimorphic image of a (finite) direct sum of groups in \mathcal{C} . It is easy to see that G is A-generated if and only if $S_A(G) = G$. The symbol ~ denotes quasi-isomorphisms, i.e. isomorphisms in $\mathbb{Q}Ab$. Two subgroups G and H of a group A are quasi-equal, denoted by $G \doteq H$, if $G \cap H$ is of finite index in G and in H. Finally, if V and W are sets such that all but finitely many elements of V are contained in W, then V is quasi-contained in W. This is denoted by $V \subseteq W$. The sets V and W are quasi-equal, denoted by $V \doteq W$, if $V \subseteq W$ and $W \subseteq V$.

2. Self-small Groups Determined by Homomorphism Groups

We begin our discussion on how far the structure of a mixed group A is determined by the groups Hom(A, C) with the case that the test groups C have rank 1:

Proposition 2.1. Let A and B be in S such that $\operatorname{Hom}(A, C) \cong \operatorname{Hom}(B, C)$ for all $C \in \mathcal{G}$ with $r_0(C) = 1$. Then,

- i) $T(A) \cong T(B)$.
- ii) $r_p(A/T(A)) = r_p(B/T(B))$ for all primes p.
- iii) $r_0(A) = r_0(B)$.

Proof. Observe that $T_p(A)$ and $T_p(B)$ are finite for all primes p since A and B are in S. Choose $n < \omega$ with $p^n T_p(A) = p^n T_p(B) = 0$, and select a group $C \in \mathcal{G}$ with $T_p(C) = \mathbb{Z}/p^{n+1}\mathbb{Z}$ and $r_0(G) = 1$. If $C = T_p(C) \oplus C^p$ such that multiplication by p is an automorphism of C^p , then $\operatorname{Hom}(A, C) = \operatorname{Hom}(A, T_p(C)) \oplus \operatorname{Hom}(A, C^p)$; and multiplication by p induces an automorphism on $\operatorname{Hom}(A, C^p)$. Therefore, $T_p(\operatorname{Hom}(A, C)) = \operatorname{Hom}(A, T_p(C))$. Since $T_p(A)$ is finite, $A = T_p(A) \oplus A'$, and $\operatorname{Hom}(A', T_p(C)) \cong \operatorname{Hom}(A/T(A), T_p(C)) \cong [\mathbb{Z}/p^{n+1}\mathbb{Z}]^{n_p}$ where $n_p = r_p(A/T(A))$. On the other hand, $\operatorname{Hom}(T_p(A), T_p(C)) \cong T_p(A)$. Thus, $T_p(\operatorname{Hom}(A, C)) \cong T_p(A) \oplus$ $[\mathbb{Z}/p^{n+1}\mathbb{Z}]^{n_p}$. Similarly, $T_p(\operatorname{Hom}(B, C)) \cong T_p(B) \oplus [\mathbb{Z}/p^{n+1}\mathbb{Z}]^{m_p}$ where $m_p = r_p(B/T(B))$. Since $T_p(A) \cong T_p(B)$ and $n_p = m_p$.

Furthermore, $\mathbb{Q} \in \mathcal{G}$ yields $\operatorname{Hom}(A, \mathbb{Q}) \cong \mathbb{Q}^{r_0(A)}$ and $\operatorname{Hom}(B, \mathbb{Q}) \cong \mathbb{Q}^{r_0(B)}$. Thus, $r_0(A) = r_0(B)$.

The converse of this proposition is not valid.

Example 2.2. There exist two groups $A, B \in S$ and a group $G \in G$ such that A and B verify i), ii) and iii) in Proposition 2.1 but Hom $(A, G) \ncong \text{Hom}(B, G)$.

Proof. Let $A = \mathbb{Z}$ and B a rank 1 torsion-free group of type $(1, \ldots, 1, \ldots)$. If $G \in \mathcal{G}$ is a group such that $T_p(G) \neq 0$ for infinitely many primes p, it is not hard to see that $\operatorname{Hom}(A, G) \cong G$ is countable, while $\operatorname{Hom}(B, G)$ is uncountable since it contains a subgroup isomorphic to $\operatorname{Hom}(\oplus_p \mathbb{Z}/p\mathbb{Z}, T(G))$.

Corollary 2.3. Let A and B be self-small groups with $r_0(A) = r_0(B) = 1$. Then, $A \cong B$ if and only if $\text{Hom}(A, C) \cong \text{Hom}(B, C)$ for all $C \in S$ with $r_0(C) = 1$.

Proof. Since $0 \neq \text{Hom}(A, \overline{A}) \cong \text{Hom}(B, \overline{A})$, $type(\overline{B}) \leq type(\overline{A})$. By symmetry, \overline{A} and \overline{B} have the same type. Moreover, $T(A) \cong T(B)$ by Proposition 2.1. Hence, [2, Corollary 4.5] yields $A \cong B$.

Lemma 2.4. Let $A \in S$ with $r_0(A) > 0$. If N is the two-sided ideal of E containing T(E) such that N/T(E) = N(E/T(E)), then A/NA is not torsion.

Proof. Suppose that A/NA is torsion. We show that A/N^kA is torsion for all $k < \omega$ by induction on k. Suppose that A/N^kA is a torsion group. The exact sequence $0 \to N^k/N^{k+1} \to E/N^{k+1} \to E/N^k \to 0$ induces $T_A(N^k/N^{k+1}) \to T_A(E/N^{k+1}) \to T_A(E/N^{k+1}) \to T_A(E/N^k) \to 0$ in which $T_A(E/N^k) \cong A/N^kA$ is torsion. Moreover, N^k/N^{k+1} is an E/N-module, and there is an exact sequence $\bigoplus_I E/N \to N^k/N^{k+1} \to 0$ from which we obtain that $T_A(N^k/N^{k+1})$ is torsion as an epimorphic image of the torsion group $\bigoplus_I T_A(E/N) \cong \bigoplus_I A/NA$. Then $A/N^{k+1}A$ is torsion.

Since N(E/T(E)) is nilpotent, there is $\ell < \omega$ with $N^{\ell} \subseteq T(E)$. Hence, $N^{\ell}A \subseteq T(E(A)) \subseteq T(A)$ is torsion and the same holds for A, a contradiction. \Box

If $A \in S$, then there are a non-zero integer k and essentially strongly indecomposable subgroups A_1, \ldots, A_n of A such that $r_0(A_i) > 0$ for all $i = 1, \ldots, n$ and $kA \subseteq A_1 \oplus \ldots \oplus A_n \subseteq A$. These essentially strongly indecomposable groups are unique up to quasi-isomorphisms by [7, Theorem 2.9]. Let $\delta_i : A_i \to A$ be the inclusion map. For the projection maps $\pi_i : A_1 \oplus \ldots \oplus A_n \to A_i$, define $\sigma_i : A \to A_i$ by $\sigma_i(a) = \pi_i(ka)$. We obtain $k1_A = \sum_{i=1}^n \delta_i \sigma_i$, and $k1_{A_i} = \sigma_i \delta_i$. If necessary, a superscript referring to A will be added to these maps.

Lemma 2.5. Let A and B be quasi-isomorphic, essentially strongly indecomposable groups in S. If $\alpha : A \to B$ is a homomorphism then $\text{Ker}(\alpha)$ is bounded if and only if α is a quasi-isomorphism.

Proof. Suppose that Ker α is bounded. If $\beta: B \to A$ is a quasi-isomorphism, then $\beta \alpha: A \to A$ has a bounded kernel. Thus, $\beta \alpha$ is a quasi-monomorphism, which cannot be nilpotent. Since the quasi-endomorphism ring of A is a local finite-dimensional \mathbb{Q} -algebra, $\beta \alpha$ is a quasi-isomorphism, and the same holds for α . The converse implication is obvious (see [12]).

Lemma 2.6. For $A \in S$, let N be the ideal of E containing T(E) with N/T(E) = N(E/T(E)). If $\alpha \in \text{Hom}(A_i, A_j)$, then the following hold:

- a) If α is not a quasi-isomorphism, then $\delta_i \alpha \sigma_i \in N$.
- b) If A_i and A_j are quasi-isomorphic, and if $\text{Ker}(\alpha)$ is bounded, then α is a quasi-isomorphism.

Proof. a) By [5, Proposition 9.1], N/T(E) is pure in E/T(E), and $\mathbb{Q}N/T(E) = N(\mathbb{Q}E/T(E))$. Moreover, $N/T(E) = N(\mathbb{Q}E/T(E)) \cap E/T(E)$. In particular, E/N is torsion-free as an abelian group.

If $\delta_j \alpha \sigma_i \notin N$, then $\delta_j \alpha \sigma_i$ has infinite order. Suppose there is $\sigma \in E$ such that $\overline{\sigma_i \sigma \delta_j \alpha} \notin N(\overline{E(A_i)})$. Since $\mathbb{Q}\overline{E(A_i)}$ is a local ring, $\overline{\sigma_i \sigma \delta_j \alpha}$ is a unit of $\mathbb{Q}\overline{E(A_i)}$. Thus, there exist a non-zero integer k and a map $\beta \in E(A_i)$ such that $\beta \sigma_i \sigma \delta_j \alpha - k \mathbf{1}_{A_i} \in T(E(A_i))$. Furthermore, we can find an integer ℓ with $\ell \beta \sigma_i \sigma \delta_j \alpha = \ell k \mathbf{1}_{A_i}$. Thus, α is a quasi-splitting quasi-monomorphism. Write $A_j \doteq \alpha(A_i) \oplus U$. Since $\alpha(A_i)$ is not bounded, U is bounded. Thus, α is a quasi-isomorphism, which is not possible.

Consequently, $\overline{\sigma_i \sigma \delta_j \alpha} \in N(\overline{E(A_i)})$ for all $\sigma \in E$. For every $\sigma \in E$, we can find $m < \omega$ with $(\sigma_i \sigma \delta_j \alpha)^m \in T(E(A_i))$. Then, $(\sigma \delta_j \alpha \sigma_i)^{m+1} = \sigma \delta_j \alpha (\sigma_i \sigma \delta_j \alpha)^m \sigma_i \in T(E)$. Let $I = E \delta_j \alpha \sigma_i$, and observe that we have just shown that $\overline{I} = (I + T(E))/T(E)$ is a left nilideal of E/T(E). Hence, $\mathbb{Q}\overline{I}$ is a left nilideal of $\mathbb{Q}(E/T(E))$. Since the latter ring is Artinian, $\mathbb{Q}\overline{I}$ is nilpotent, and the same holds for \overline{I} . Therefore, $\overline{I} \subseteq N/T(E)$, and $I \subseteq N$.

b) is a consequence Lemma 2.5.

Lemma 2.7. Let A and B be in S such that $S_B(A) \doteq A$ and $S_A(B) \doteq B$ and $r_0(A), r_0(B) > 0$. Then, there exists an essentially strongly indecomposable direct quasi-summand of A which is not torsion and is quasi-isomorphic to a direct quasi-summand of B.

Proof. Without loss of generality, we may assume $B = S_A(B)$ and $A = S_B(A)$.

Choose non-zero integers s and t such that $sA \subseteq A_1 \oplus \cdots \oplus A_n \subseteq A$ and $tB \subseteq B_1 \oplus \cdots \oplus B_m \subseteq B$ for essentially strongly indecomposable groups A_1, \ldots, A_n and B_1, \ldots, B_m . Choose an ideal N_B of E(B) containing T(E(B)) such that $N_B/T(E(B)) = N(\overline{E(B)})$. By Lemma 2.4, B/N_BB is not torsion. Select $b \in B$ such that $b + N_BB$ has infinite order. We shall modify the choice of b to find an element suitable for our purposes.

Since $B = S_A(B)$, we can find $x_1, \ldots, x_\ell \in A$ and $\phi_1, \ldots, \phi_\ell \in H_A(B)$ with $b = \phi_1(x_1) + \cdots + \phi_\ell(x_\ell)$. At least one of the elements $\phi_i(x_i) + N_B B$ has to have infinite order, and we may assume that $b = \phi(a)$ for some $a \in A$ and $\phi \in H_A(B)$. There exist $a_i \in A_i$ for $i = 1, \ldots, n$ with $sa = a_1 + \cdots + a_n$. Since $sb + N_B B$ has infinite order, and $sb = \phi(sa) = \phi(a_1) + \cdots + \phi(a_n)$, at least one of the cosets $\phi(a_j) + N_B B$ has to have infinite order. Without loss of generality, this occurs for j = 1. Hence, we may assume $b = \phi(a_1)$ for some $a_1 \in A_1$.

Because of $A_1 \doteq S_B(A_1)$, we can find a non-zero integer $k, y_1, \ldots, y_r \in B$ and $\psi_1, \ldots, \psi_r \in H_B(A_1)$ with $ka_1 = \psi_1(y_1) + \cdots + \psi_r(y_r)$. Since $kb + N_BB$ has infinite order, the same holds for at least one of the cosets $\psi_j(y_j) + N_BB$. Therefore, we may assume $b = \phi \psi(y)$ for some $y \in B$ and $\psi \in H_B(A)$. There exist $b_j \in B_j$ for $j = 1, \ldots, m$ with $ty = b_1 + \cdots + b_m$. Arguing as before, we may assume that $b = \phi \psi(b_1)$ for some $b_1 \in B_1$. Let $\gamma = \psi_{|B_1|} \in \text{Hom}(B_1, A_1)$.

By the remarks preceding Lemma 2.5, the quasi-projections σ_j^B and embeddings δ_j^B satisfy $t_{1B} = \sum_{j=1}^m \delta_j^B \sigma_j^B$. Since $t\phi\gamma(b_1) = \sum_{j=1}^m \delta_j^B \sigma_j^B \phi\gamma(b_1)$ has infinite order modulo N_BB , the same has to hold for $\delta_j^B \sigma_j^B \phi\gamma(b_1)$ for some $j \in \{1, \ldots, m\}$. We make this elements our final choice for b.

If $B_1 \not\sim B_j$, then $\delta_j^B \sigma_j^B \phi \gamma \sigma_1^B \in N_B$ by Lemma 2.6a). But then, $\sigma_1^B(b_1) = tb_1$ yields $tb = t\delta_j^B \sigma_j^B \phi \gamma(b_1) = \delta_j^B \sigma_j^B \phi \gamma(tb_1) = \delta_j^B \sigma_j^B \phi \gamma \sigma_1(b_1) \in N_B B$. Thus, b has finite order modulo $N_B B$, a contradiction.

Therefore, B_1 and B_j are quasi-isomorphic. But then, $\alpha = \sigma_j^B \phi \gamma$ has to be a quasi-isomorphism. Otherwise, we can use Lemma 2.6a) to obtain $\delta_i^B \sigma_j^B \phi \gamma \sigma_1^B \in$

 N_B as before. Arguing as in the last paragraph, we obtain a contradiction. Therefore, $\sigma_j^B \phi \gamma$ is a quasi-isomorphism by Lemma 2.6b); and γ is a quasi-splitting quasi-monomorphism. Since A_1 is essentially strongly indecomposable, this is only possible if γ is a quasi-isomorphism.

Theorem 2.8. The following are equivalent for groups $A, B \in S$:

a) $A \sim B$.

b) $r_0(\operatorname{Hom}(A, C)) = r_0(\operatorname{Hom}(B, C))$ for all groups $C \in \mathcal{S}$.

Proof. It remains to show $b \ge a$: Observe that

$$\begin{split} r_0(E(B)) &= r_0(\operatorname{Hom}(B,B)) = r_0(\operatorname{Hom}(A,B)) = r_0(\operatorname{Hom}(A,S_A(B))) < \infty, \quad \text{and} \\ r_0(E(A)) &= r_0(\operatorname{Hom}(A,A)) = r_0(\operatorname{Hom}(B,A)) = r_0(\operatorname{Hom}(A,S_B(A))) < \infty. \end{split}$$

In particular, Hom(A, T(B)) and Hom(B, T(A)) are torsion since otherwise their torsion-free ranks would be infinite. Hence, $A \oplus B$ is self-small by [4, Theorem 2.4]. It follows that every finitely A-generated subgroup of B is self-small since it is an endomorphic image of a finite power of $A \oplus B$.

The group $S_A(B)$ may not be self-small. Hence, choose a finitely A-generated subgroup U of B with $r_0(\operatorname{Hom}(A, U)) = r_0(\operatorname{Hom}(A, S_A(B)))$. Because U is selfsmall, $r_0(\operatorname{Hom}(A, U)) = r_0(\operatorname{Hom}(B, U))$. Thus, $E(B)/\operatorname{Hom}(B, U)$ is torsion as an abelian group, and there is a non-zero integer d such that $d1_B \in \operatorname{Hom}(B, U)$. Therefore, $dB \subseteq U \subseteq S_A(B) \subseteq B$. Hence, $B \doteq S_A(B)$ and $A \doteq S_B(A)$.

Let $A \doteq A_1 \oplus \ldots \oplus A_n$ and $B \doteq B_1 \oplus \ldots \oplus B_m$ for essentially strongly indecomposable groups A_1, \ldots, A_n and B_1, \ldots, B_m of positive rank. The proof will proceed by induction on n + m. If n + m = 0, then A and B are torsion, and hence finite. Clearly, there is nothing to prove. Thus, assume n + m > 0. Without loss of generality, m > 0.

By Lemma 2.7, we may assume $A_1 \sim B_1$. In particular, $r_0(\text{Hom}(A_1, C)) = r_0(\text{Hom}(B_1, C))$ whenever $C \in S$. Moreover,

$$r_0(\operatorname{Hom}(A_2 \oplus \ldots \oplus A_n, C)) = r_0(\operatorname{Hom}(A_1 \oplus \ldots \oplus A_n, C)) - r_0(\operatorname{Hom}(A_1, C)) =$$

 $r_0(\text{Hom}(A, C)) - r_0(\text{Hom}(A_1, C)) = r_0(\text{Hom}(B, C)) - r_0(\text{Hom}(B_1, C)) =$

 $r_0(\operatorname{Hom}(B_1 \oplus \ldots \oplus B_m, C)) - r_0(\operatorname{Hom}(B_1, C)) = r_0(\operatorname{Hom}(B_2 \oplus \ldots \oplus B_m, C))$

for all self-small groups C. By induction hypothesis, $B_2 \oplus \ldots \oplus B_m \sim A_2 \oplus \ldots \oplus A_n$. Consequently, $A \sim B$.

The proof of the last result actually shows that the rank of the test groups C need not exceed the common rank of A and B:

Corollary 2.9. The following are equivalent for groups $A, B \in S$:

- a) $A \sim B$.
- b) $r_0(\operatorname{Hom}(A, C)) = r_0(\operatorname{Hom}(B, C))$ for all self-small groups C with $r_0(C) \le \max(r_0(A), r_0(B))$.

Corollary 2.9 cannot be extended to determine A and B up to isomorphism:

Example 2.10. There exist non-isomorphic groups A and B in S with $r_0(A) = r_0(B) = 2$ and $\operatorname{Hom}(A, C) \cong \operatorname{Hom}(B, C)$ for all $C \in S$ with $r_0(C) \leq 2$.

Proof. By [3, Example 3.5], there exist quasi-isomorphic torsion-free groups A and B of rank 2 such that $\text{Hom}(A, D) \cong \text{Hom}(B, D)$ for all torsion-free groups D of

rank at most 2, but $A \ncong B$. Furthermore, $E(A) = E(B) = \mathbb{Z}_{pq}$ for two primes $p \neq q$. By [5, Theorem 0.2], we have $r_p(A) = r_p(B)$ and $r_q(A) = r_q(B)$.

Suppose that $C \in \mathcal{S}$ with $r_0(C) \leq 2$. Write $C = T_p(C) \oplus T_q(C) \oplus C'$. For s = p, q, we obtain $\operatorname{Hom}(A, T_s(C)) \cong \bigoplus_{r_s(A)} T_s(C) \cong \bigoplus_{r_s(B)} T_s(C) \cong \operatorname{Hom}(B, T_s(C))$. Thus, we may assume $C_p = C_q = 0$.

Since $T_s(C)$ is finite for all primes s, we have $\operatorname{Hom}(A, T(C)) = \operatorname{Hom}(B, T(C)) = 0$, and hence $S_B(C) \cap T(C) = S_A(C) \cap T(C) = 0$. Let $U = S_A(C) + S_B(C)$. We show that U is torsion-free. Suppose $u \in U$ satisfies nu = 0 for some non-zero $n \in \mathbb{Z}$, coprime with p and q. Write $u = \phi_1(a_1) + \cdots + \phi_k(a_k) + \psi_1(b_1) + \cdots + \psi_m(b_m)$ for $\phi_1, \ldots, \phi_k \in \operatorname{H}_A(C), \psi_1, \ldots, \psi_m \in \operatorname{H}_B(C), a_1, \ldots, a_k \in A$, and $b_1, \ldots, b_m \in B$. Since A and B are quasi-isomorphic, we may assume $tA \subseteq B \subseteq A$ where $t = p^i q^j$. Then, $tu = \phi_1(ta_1) + \cdots + \phi_k(ta_k) + \psi_1(tb_1) + \cdots + \psi_m(tb_m)$. Since $\phi_1|B, \ldots, \phi_k|B \in \operatorname{H}_B(C)$, we obtain $tu \in S_B(C)$. Since (n, t) = 1, there are $x, y \in \mathbb{Z}$ with 1 = xt + yn. Then, $u = xtu + ynu = xtu \in S_B(C) \cap T(C) = 0$. Hence, U is torsion-free; and $\operatorname{Hom}(A, C) = \operatorname{Hom}(A, U) \cong \operatorname{Hom}(B, U) = \operatorname{Hom}(B, C)$ as desired. \Box

A finite torsion-free rank group A is self-small if and only if every $T_p(A)$ of A is finite for all primes p and there exists (for every) a full free subgroup $F \leq A$ such that A/F is p-divisible for almost all p with $T_p(A) \neq 0$. For $A \in S$, define the support of A to be $S(A) = \{p \in \mathbb{P} \mid T_p(A) \neq 0\}$, and the divisibility of A the quasi-equality class D(A) of all primes p such that A/F is p-divisible, where F is a fixed full free subgroup of A. For a set W of primes, consider the class S(W) = $\{A \in S \mid S(A) \subseteq W \subseteq D(A)\}$, which is closed with respect direct summands, finite direct sums, finitely S(W)-generated subgroups, and quasi-isomorphisms. Observe that, modulo finite direct summands, $S(\emptyset)$ is the class of all finite rank torsion free groups, and $S(\mathbb{P})$ is the class of quotient divisible groups. Arguing as in the proof of Theorem 2.8, we obtain

Corollary 2.11. The following are equivalent for groups A and B in $\mathcal{S}(W)$:

- a) $A \sim B$.
- b) $r_0(\operatorname{Hom}(A, C)) = r_0(\operatorname{Hom}(B, C))$ for all groups $C \in \mathcal{S}(W)$ with $r_0(C) \leq \max(r_0(A), r_0(B))$.

3. Self-small groups Determined by Their Right Orthogonal Classes

Let W be a set of primes, and consider $A \in \mathcal{S}(W)$. Suppose that $C \in \mathcal{S}(W)$ is a subgroup of A. The symbol C^{\sharp} denotes the subgroup of A containing C such that C^{\sharp}/C is the sum of the torsion part of the maximal divisible subgroup of A/C and the p-components of A/C for all primes p not in S(A).

Lemma 3.1. With the above notations, C^{\sharp} and A/C^{\sharp} are in S(W).

Proof. It is obvious that $S(A/C^{\sharp}) \subseteq S(A)$. Let F_1 be a full free subgroup of C. If F_2 is a free subgroup of A such that $F = F_1 \oplus F_2$ is a full free subgroup of A, then $(F_2 + C^{\sharp})/C^{\sharp}$ is a full free subgroup of A/C^{\sharp} . Hence, $[A/C^{\sharp}]/[(F_2 + C^{\sharp})/C^{\sharp})] \cong A/(F_2 + C^{\sharp})$ is an epimorphic image of A/F, and $A/C^{\sharp} \in \mathcal{S}(W)$.

Moreover, the middle term in the exact sequence $0 \to C/F_1 \to C^{\sharp}/F_1 \to C^{\sharp}/C \to 0$ is torsion and divisible for almost all $p \in W$ since the groups C/F_1 and C^{\sharp}/C are *p*-divisible groups for almost all $p \in W$. Therefore $C^{\sharp} \in \mathcal{S}(W)$. \Box

If $A, X \in \mathcal{S}(W)$ then $A \oplus X \in \mathcal{S}(W)$, hence $T(\operatorname{Hom}(A, X)) = \operatorname{Hom}(A, T(X))$. Therefore every homomorphism $A \to T(X)$ has finite image. Let

$$A^{\perp} = \{X \in \mathcal{S}(W) \mid \mathbb{Q}\operatorname{Hom}(A, X) = 0\} = \{X \in \mathcal{S}(W) \mid \operatorname{Hom}(A, X) \text{ is torsion}\}.$$

The next results outlines the basic properties of the classes A^{\perp} .

Lemma 3.2. Let W be a set of primes.

- a) If $A, B \in \mathcal{S}(W)$, then $B \in A^{\perp}$ if and only if the image $S_A(B)$ is torsion. b) If $A_1, \ldots, A_n \in \mathcal{S}(W)$ then $(\bigoplus_{i=1}^n A_i)^{\perp} = \bigcap_{i=1}^n A_i^{\perp}$.
- c) $A^{\perp} = (A \oplus \mathbb{Q})^{\perp}$ for all $A \in \mathcal{S}(W)$.
- d) If $A, B \in \mathcal{S}(W)$ such that there exists a homomorphism $\alpha : A \to B$ with $B/\alpha(A)$ a torsion group, then $A^{\perp} \subseteq B^{\perp}$.
- e) If A and B are quasi-isomorphic groups in $\mathcal{S}(W)$ then $A^{\perp} = B^{\perp}$.

The next result is based on ideas from [13, Section 4] and from [10, Proposition [5.6].

Proposition 3.3. If $A \in \mathcal{S}(W)$ then there exists a group $C \in \mathcal{S}(W)$ such that:

- i) C is an epimorphic image of A,
- ii) C has no non-zero nilpotent quasi-endomorphisms, and
- iii) $A^{\perp} = C^{\perp}$.

Proof. If there exists an endomorphism α of A such that $\alpha(A)$ is not torsion, but $\alpha^2 = 0$, then $\operatorname{Im}(\alpha) \subseteq \operatorname{Ker}(\alpha)$ and $A/\operatorname{Ker}(\alpha) \cong \operatorname{Im}(\alpha)$ are in $\mathcal{S}(W)$. Moreover, $[A/\operatorname{Im}(\alpha)]/[\operatorname{Ker}(\alpha)/\operatorname{Im}(\alpha)] \cong A/\operatorname{Ker}(\alpha) \in \mathcal{S}(W);$ and the support of the group $[A/\mathrm{Im}(\alpha)]/[\mathrm{Ker}(\alpha)/\mathrm{Im}(\alpha)]$ is contained in S(A). Consequently, $\mathrm{Ker}(\alpha)/\mathrm{Im}(\alpha)$ contains the torsion part of the maximal divisible subgroup of $A/\text{Im}(\alpha)$ and the pcomponents of $A/\operatorname{Im}(\alpha)$ for all primes p not in S(A). Moreover, $\operatorname{Im}(\alpha)^{\sharp} \subseteq \operatorname{Ker}(\alpha)$. Let $A' = A/\operatorname{Im}(\alpha)^{\sharp}$ and $\pi : A \to A'$ be the canonical epimorphism.

Consider a group X in $\mathcal{S}(W)$. If we can find a homomorphism $f: A \to X$ such that $\operatorname{Im}(f)$ is not torsion, then $A/\operatorname{Ker}(f) \cong \operatorname{Im}(f) \in \mathcal{S}(W)$. The canonical epimorphism $\rho : A \to A/\operatorname{Ker}(f)$ satisfies $\operatorname{Im}(\rho\alpha) = [\operatorname{Im}(\alpha) + \operatorname{Ker}(f)]/\operatorname{Ker}(f) \in$ $\mathcal{S}(W)$. If the latter is torsion, then it has to be finite. Choose a non-zero integer k with $\operatorname{Im}(k\alpha) \subseteq \operatorname{Ker}(f)$. We observe that the torsion part of $A/\operatorname{Ker}(f)$ is reduced and $S(A/\operatorname{Ker}(f)) \subseteq S(A)$. Then, $\operatorname{Im}(k\alpha)^{\sharp} \subseteq \operatorname{Ker}(f)$, and f induces a homomorphism $\overline{f}: A/\mathrm{Im}(k\alpha)^{\sharp} \to X$ defined by $\overline{f}(a + \mathrm{Im}(k\alpha)^{\sharp}) = f(a)$, whose image is not torsion. On the other hand, if $(\text{Im}(\alpha) + \text{Ker}(f))/\text{Ker}(f)$ is not torsion, then consider the homomorphism $\overline{\alpha} : A/\mathrm{Im}(\alpha)^{\sharp} \to \mathrm{Ker}(\alpha)$ defined by $\overline{\alpha}(a + \mathrm{Im}(\alpha)^{\sharp}) = \alpha(a)$. Let $\iota: \operatorname{Ker}(\alpha) \to B'$ be the inclusion map; and consider $f\iota\overline{\alpha}: A/\operatorname{Im}(\alpha)^{\sharp} \to X$. Choose $a' = a + \operatorname{Im}(\alpha)^{\sharp} \in A/\operatorname{Im}(\alpha)^{\sharp}$ in such a way that $f\iota\overline{\alpha}(ka') = 0$ for some non-zero integer k. Then, $k\alpha(a) \in \operatorname{Ker}(f)$. Hence, there exists $x \in A/\operatorname{Im}(\alpha)^{\sharp}$ such that $f\iota\overline{\alpha}(x)$ has infinite order.

Consequently, $\operatorname{Hom}(A/\operatorname{Im}(\alpha)^{\sharp}, X)$ is not torsion; and $(A/\operatorname{Im}(\alpha)^{\sharp})^{\perp} \subseteq A^{\perp}$. Since the other inclusion is obvious, $(A/\mathrm{Im}(\alpha)^{\sharp})^{\perp} = A^{\perp}$ and $r_0(A/\mathrm{Im}(\alpha)^{\sharp}) < r_0(A)$. If $A' = A/\mathrm{Im}(\alpha)^{\sharp}$ has non-zero nilpotent quasi-endomorphisms, we can repeat this procedure to find a group $A'' \in \mathcal{S}(W)$ with $A''^{\perp} = A^{\perp}$ and $r_0(A'') < r_0(A') <$ $r_0(A)$. This process has to stop after a finite number of steps, since $r_0(A)$ is finite. Hence, there exists a group $C \in \mathcal{S}(W)$ which is an epimorphic image of A such that $C^{\perp} = A^{\perp}$ and $N(\overline{E(C)}) = 0$. This C satisfies ii) as a consequence of Lemma 2.6. \square **Theorem 3.4.** The following are equivalent for a group $A \in \mathcal{S}(W)$:

- a) $A \sim B$ whenever $B \in \mathcal{S}(W)$ with $A^{\perp} = B^{\perp}$;
- b) $A \sim (\bigoplus_{i=1}^{n} A_i) \oplus \mathbb{Q}^r$, where A_i are essentially strongly indecomposable groups such that
 - i) $\mathbb{Q}E(A_i)$ is a division ring for all i = 1, ..., n,
 - ii) Hom (A_i, A_j) is torsion for all $i \neq j$,
 - iii) If a group $C \in \mathcal{S}(W)$ has torsion-free rank at most r and is an epimorphic image of some A_i for some i, then C is a sum of a (torsion-free) divisible group and a finite group.

Proof. a) \Rightarrow b) : We may assume that $A = A' \oplus \mathbb{Q}^r$, where A' is reduced and $A' = \bigoplus_{i=1}^n A_i$. If $\mathbb{Q}E(A')$ has a non-zero nilpotent element then, as in the proof of Proposition 3.3, there exists $C \in \mathcal{S}(W)$ such that $A'^{\perp} = C^{\perp}$ and $s = r_0(A') - r_0(C) > 0$. Then $A^{\perp} = (C \oplus \mathbb{Q}^{r+s})^{\perp}$, a contradiction. By Lemma 2.6, A satisfies conditions i) and ii). Suppose that $A_i/N = C \in \mathcal{S}(W)$ and $r_0(C) \leq r$. Then $A^{\perp} = A \oplus C \oplus \mathbb{Q}^{r-r_0(C)}$. Since $C \sim \mathbb{Q}^{r_0(C)}$ because of a), we obtain that iii) holds too.

 $b) \Rightarrow a)$: We consider direct decompositions $A = A' \oplus \mathbb{Q}^r$ and $B = B' \oplus \mathbb{Q}^s$ with A' and B' reduced groups. We may assume $A' = \bigoplus_{i=1}^n A_i$, where the A_i 's are essentially strongly indecomposable groups which verify i), ii) and iii). Then, $A'^{\perp} = A^{\perp} = B^{\perp} = B'^{\perp}$. Moreover, there exists a group $C \in \mathcal{S}(W)$ as in Proposition 3.3 such that $B^{\perp} = C^{\perp}$.

As a consequence of Lemma 2.6, we may assume that $C = \bigoplus_{i=1}^{s} C_i$, where the rings $\mathbb{Q}E(C_i)$ are division rings and $\operatorname{Hom}(C_i, C_j)$ is torsion for all $i \neq j$. Let $j \in \{1, \ldots, s\}$. Since $\operatorname{Hom}(C, C_j)$ is not torsion, there exists $f_j : A' \to C_j$ such that $\operatorname{Im}(f_j)$ is not torsion. Because $\operatorname{Im}(f_j) \in \mathcal{S}(W)$, we can find a homomorphism $g: C \to \operatorname{Im}(f_j)$ whose image is not torsion. Since $\operatorname{Im}(f_j) \subseteq C_j$ and $g(\bigoplus_{i\neq j} C_i)$ is a finite group, $g(C_j)$ is not torsion either; and the restriction of g to C_j represents a non-zero quasi-endomorphism of C_j . Therefore, it has to be a quasi-epimorphism; and $\operatorname{Im}(g)$ has finite index in C_j . Since the same holds for $\operatorname{Im}(f_j)$, we obtain $S_{A'}(C) \doteq C$. In the same way, $S_C(A') \doteq A'$. By Lemma 2.7, we may assume $A_1 \sim C_1$.

If $j \in \{2, \ldots, s\}$, then $f_j(A_1)$ is a finite group. Hence, the restriction $f_{j|\bigoplus_{i=2}^n A_i}$: $\bigoplus_{i=2}^n A_i \to C_j$ is a quasi-epimorphism. Then, $S_{\bigoplus_{i=2}^n A_i}(\bigoplus_{j=2}^s C_j) \doteq \bigoplus_{i=2}^s C_j$, and in the same way we obtain $S_{\bigoplus_{i=2}^s C_j}(\bigoplus_{i=2}^n A_i) \doteq \bigoplus_{i=2}^n A_i$. Lemma 2.7 once more allows us to assume $A_2 \sim C_2$. We repeat these arguments for all j, and obtain $A' \sim C$ after a finite number of steps.

Suppose that B' has an endomorphism α such that $\alpha \neq \alpha^2 = 0$ in $\mathbb{Q}E(B')$. In view of the proof of Proposition 3.3, we may assume that C is an epimorphic image of $B'/\operatorname{Im}(\alpha)^{\sharp}$. Then $r_0(\operatorname{Im}(\alpha)^{\sharp}) \leq r_0(B') - r_0(C) \leq r_0(A) - r_0(C) = r$. Since we can view α as a map from B' to $\operatorname{Im}(\alpha)^{\sharp}$, there exists a homomorphism $\beta: A' \to \operatorname{Im}(\alpha)^{\sharp}$ which has a non-torsion image. Using iii), $\operatorname{Im}(\beta) \leq B'$ is divisible. But this is not possible since B' is reduced. Therefore $N_{B'}(E(B')/T(E(B'))) = 0$. Consequently, $B' \sim C \sim A'$, and $B \sim A$.

References

- Albrecht, U., Fuchs' Problem 34 for Mixed Abelian Groups, Proc. AMS 131 (2002), 1021-1029.
- [2] Albrecht, U., Breaz, S. and Wickless, W., Self-small abelian groups, preprint.

- [3] Albrecht, U. F., and Goeters, H. P., Fuchs' Problem 34, Proc. AMS 124 (1996), 1319–1328.
- [4] Albrecht, U., Goeters, P. and Wickless, W.: The Flat Dimension of Abelian Groups as Emodules, Rocky Mount. J. of Math., 25(2) (1995), 569–590.
- [5] Arnold, D. M., Finite Rank Torsion Free Abelian Groups and Rings, Lect. Notes in Math. Springer-Verlag, 931, (1982).
- [6] Arnold, D. M., Murley, C. E., Abelian groups, A, such that Hom(A, -) preserves direct sums of copies of A, Pacific J. Math., 56, (1975), 7-21.
- [7] Breaz, S., Quasi-decompositions for self-small abelian groups, Comm. Algebra 32 (2004), 1373–1384.
- [8] Fuchs, L., Infinite abelian groups I,II, Academic Press (1970/1973).
- [9] Goeters, H. P., Fuchs' problem 43, Rocky Mount. J. of Math., 22(1) (1992), 197–201.
- [10] Kerner, O., Trlifaj, J., Tilting classes over wild hereditary algebras, J. Algebra 290 (2005), 538-556.
- [11] Schultz, P., Annihilator classes of torsion-free abelian groups, in Lecture Notes in Mathematics, vol. 697, Springer-Verlag, 1978.
- [12] Walker, E.: Quotient categories and quasi-isomorphisms of abelian groups, Proc. Colloq. Abelian Groups, Budapest, (1964), 147-162.
- [13] Wickless, W. J., An equivalence relation for torsion-free abelian groups of finite rank, J. Algebra, 153 (1992), 1–12.

Department of Mathematics, Auburn University, Auburn, AL 36849, U.S.A. $E\text{-}mail\ address:\ \texttt{albreuf@mail.auburn.edu}$

"Babeş-Bolyai" University, Faculty of Mathematics and Computer Science, Str. Mihail Kogălniceanu 1, 400084 Cluj-Napoca, Romania

E-mail address: bodo@math.ubbcluj.ro