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Abstract. This paper investigates to which extent a self-small mixed Abelian

group G of finite torsion-free rank is determined by the groups Hom(G, C)

where C is chosen from a suitable class C of Abelian groups. We show that G
is determined up to quasi-isomorphism if C is the class of all self-small mixed

groups C with r0(C) ≤ r0(G). Several related results are given, and the dual

problem of orthogonal classes is investigated.

1. Introduction

Problem 34 in [8] asks whether it is possible to find a set C of Abelian groups
with the property that two Abelian groups A and B are isomorphic provided that
Hom(A,C) ∼= Hom(B,C) for all C ∈ C. The negative answer given in [3] raised
the question to identify properties of Abelian groups which are determined by
Hom(−, C) when C is chosen from a class C. For instance, if A is a reduced p-
group, and C is the class of all p-groups, then the groups {Hom(A,C)|C ∈ C}
determine the finite Ulm-Kaplansky invariants fn(A) of A, but do not affect fσ(A)
for σ ≥ ω [1]. On the other hand, if C is the class of torsion-free groups of finite
rank, then the invariants {r0(Hom(A,C)|C ∈ C} determine a group A ∈ C up to
quasi-isomorphism, but not necessarily up to isomorphism [3].

The results in [1] also addressed the question if there are classes of mixed groups
which are determined up to isomorphism by homomorphism groups. For instance,
two groups A and B in G are isomorphic if Hom(A,G) ∼= Hom(B,G) for all G ∈ G.
Here, G is the class of all self-small groups of finite torsion-free rank G such that
G/T (G) is divisible where T (G) denotes the torsion subgroup of G. Self-small
groups were introduced by Arnold and Murley in [6] as the groups A with the
property that Hom(A,A(I)) and Hom(A,A)(I) are canonically isomorphic for all
index-sets I. Although the class S of all self-small groups of finite torsion-free rank
is closed with respect direct summands and endomorphic images [6], it is not closed
with respect direct sums [2]. Further information on self-small groups can be found
in [7].

Theorem 2.8 shows that a group A ∈ S is determined up to quasi-isomorphism by
the torsion-free rank of the groups Hom(A,C) where C ∈ S (and r0(C) ≤ r0(A)).
Moreover, groups A ∈ S with r0(A) = 1 are determined up to isomorphism in this
way. However, this fails in general (Example 2.10).

Section 3 addresses a question closely related to Problem 34: Given a self-small
group A, can we find a set C containing A and a property P such that A is deter-
mined up to isomorphism by Ker(QHom(A,−))∩C and P? Annihilator classes like
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these were first considered by Schultz in [11]; and Wickless solved a dual problem
in [13]. Theorem 3.4 gives an answer for some natural arising classes of self-small
groups.

For the benefit of the reader, we give a short summary of the notation used. If
A is a group, then the symbol Tp(A) indicates the p-component of A, and A =
A/T (A). The endomorphism ring of A is E = E(A). There exists an adjoint pair
(HA,TA) of functors between the category of abelian groups and the category of
right E-modules defined by HA(G) = Hom(A,G) and TA(M) = M ⊗E A for all
abelian groups A and all right E-modules M . These functors induce natural maps
θG : TAHA(G) → G and ΦM : M → HATA(M) defined by θG(α ⊗ a) = α(a) and
[ΦM (x)](a) = x ⊗ a for all a ∈ A, x ∈ M , and α ∈ HA(G). The A-socle of G,
denoted by SA(G), is the image of θG. If C is a class of groups, then a group G is
(finitely) C-generated if it is an epimorphic image of a (finite) direct sum of groups
in C. It is easy to see that G is A-generated if and only if SA(G) = G. The symbol
∼ denotes quasi-isomorphisms, i.e. isomorphisms in QAb. Two subgroups G and
H of a group A are quasi-equal, denoted by G .= H, if G∩H is of finite index in G
and in H. Finally, if V and W are sets such that all but finitely many elements of
V are contained in W , then V is quasi-contained in W . This is denoted by V

.
⊆W .

The sets V and W are quasi-equal, denoted by V .= W , if V
.
⊆W and W

.
⊆ V .

2. Self-small Groups Determined by Homomorphism Groups

We begin our discussion on how far the structure of a mixed group A is deter-
mined by the groups Hom(A,C) with the case that the test groups C have rank
1:

Proposition 2.1. Let A and B be in S such that Hom(A,C) ∼= Hom(B,C) for all
C ∈ G with r0(C) = 1. Then,

i) T (A) ∼= T (B).
ii) rp(A/T (A)) = rp(B/T (B)) for all primes p.
iii) r0(A) = r0(B).

Proof. Observe that Tp(A) and Tp(B) are finite for all primes p since A and B are
in S. Choose n < ω with pnTp(A) = pnTp(B) = 0, and select a group C ∈ G with
Tp(C) = Z/pn+1Z and r0(G) = 1. If C = Tp(C) ⊕ Cp such that multiplication by
p is an automorphism of Cp, then Hom(A,C) = Hom(A, Tp(C)) ⊕ Hom(A,Cp);
and multiplication by p induces an automorphism on Hom(A,Cp). Therefore,
Tp(Hom(A,C)) = Hom(A, Tp(C)). Since Tp(A) is finite, A = Tp(A) ⊕ A′, and
Hom(A′, Tp(C)) ∼= Hom(A/T (A), Tp(C)) ∼= [Z/pn+1Z]np where np = rp(A/T (A)).
On the other hand, Hom(Tp(A), Tp(C)) ∼= Tp(A). Thus, Tp(Hom(A,C)) ∼= Tp(A)⊕
[Z/pn+1Z]np . Similarly, Tp(Hom(B,C)) ∼= Tp(B) ⊕ [Z/pn+1Z]mp where mp =
rp(B/T (B)). Since Tp(A) and Tp(B) contain no direct summand isomorphic to
Z/pn+1Z, we have Tp(A) ∼= Tp(B) and np = mp.

Furthermore, Q ∈ G yields Hom(A,Q) ∼= Qr0(A) and Hom(B,Q) ∼= Qr0(B).
Thus, r0(A) = r0(B). �

The converse of this proposition is not valid.

Example 2.2. There exist two groups A,B ∈ S and a group G ∈ G such that A
and B verify i), ii) and iii) in Proposition 2.1 but Hom(A,G) � Hom(B,G).
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Proof. Let A = Z and B a rank 1 torsion-free group of type (1, . . . , 1, . . . ). If G ∈ G
is a group such that Tp(G) 6= 0 for infinitely many primes p, it is not hard to see
that Hom(A,G) ∼= G is countable, while Hom(B,G) is uncountable since it contains
a subgroup isomorphic to Hom(⊕pZ/pZ, T (G)). �

Corollary 2.3. Let A and B be self-small groups with r0(A) = r0(B) = 1. Then,
A ∼= B if and only if Hom(A,C) ∼= Hom(B,C) for all C ∈ S with r0(C) = 1.

Proof. Since 0 6= Hom(A,A) ∼= Hom(B,A), type(B) ≤ type(A). By symmetry, A
and B have the same type. Moreover, T (A) ∼= T (B) by Proposition 2.1 . Hence,
[2, Corollary 4.5] yields A ∼= B. �

Lemma 2.4. Let A ∈ S with r0(A) > 0. If N is the two-sided ideal of E containing
T (E) such that N/T (E) = N(E/T (E)), then A/NA is not torsion.

Proof. Suppose that A/NA is torsion. We show that A/NkA is torsion for all k < ω
by induction on k. Suppose that A/NkA is a torsion group. The exact sequence 0 →
Nk/Nk+1 → E/Nk+1 → E/Nk → 0 induces TA(Nk/Nk+1) → TA(E/Nk+1) →
TA(E/Nk) → 0 in which TA(E/Nk) ∼= A/NkA is torsion. Moreover, Nk/Nk+1 is
an E/N -module, and there is an exact sequence ⊕IE/N → Nk/Nk+1 → 0 from
which we obtain that TA(Nk/Nk+1) is torsion as an epimorphic image of the torsion
group ⊕ITA(E/N) ∼= ⊕IA/NA. Then A/Nk+1A is torsion.

Since N(E/T (E)) is nilpotent, there is ` < ω with N ` ⊆ T (E). Hence, N `A ⊆
T (E(A)) ⊆ T (A) is torsion and the same holds for A, a contradiction. �

If A ∈ S, then there are a non-zero integer k and essentially strongly indecom-
posable subgroups A1, . . . , An of A such that r0(Ai) > 0 for all i = 1, . . . , n and
kA ⊆ A1 ⊕ . . . ⊕ An ⊆ A. These essentially strongly indecomposable groups are
unique up to quasi-isomorphisms by [7, Theorem 2.9]. Let δi : Ai → A be the
inclusion map. For the projection maps πi : A1⊕ . . .⊕An → Ai, define σi : A→ Ai

by σi(a) = πi(ka). We obtain k1A = Σn
i=1δiσi, and k1Ai = σiδi. If necessary, a

superscript referring to A will be added to these maps.

Lemma 2.5. Let A and B be quasi-isomorphic, essentially strongly indecomposable
groups in S. If α : A→ B is a homomorphism then Ker(α) is bounded if and only
if α is a quasi-isomorphism.

Proof. Suppose that Ker α is bounded. If β : B → A is a quasi-isomorphism, then
βα : A → A has a bounded kernel. Thus, βα is a quasi-monomorphism, which
cannot be nilpotent. Since the quasi-endomorphism ring of A is a local finite-
dimensional Q-algebra, βα is a quasi-isomorphism, and the same holds for α. The
converse implication is obvious (see [12]). �

Lemma 2.6. For A ∈ S, let N be the ideal of E containing T (E) with N/T (E) =
N(E/T (E)). If α ∈ Hom(Ai, Aj), then the following hold:

a) If α is not a quasi-isomorphism, then δjασi ∈ N .
b) If Ai and Aj are quasi-isomorphic, and if Ker(α) is bounded, then α is a

quasi-isomorphism.

Proof. a) By [5, Proposition 9.1], N/T (E) is pure in E/T (E), and QN/T (E) =
N(QE/T (E)). Moreover, N/T (E) = N(QE/T (E))∩E/T (E). In particular, E/N
is torsion-free as an abelian group.
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If δjασi 6∈ N , then δjασi has infinite order. Suppose there is σ ∈ E such that
σiσδjα 6∈ N(E(Ai)). Since QE(Ai) is a local ring, σiσδjα is a unit of QE(Ai).
Thus, there exist a non-zero integer k and a map β ∈ E(Ai) such that βσiσδjα −
k1Ai

∈ T (E(Ai)). Furthermore, we can find an integer ` with `βσiσδjα = `k1Ai
.

Thus, α is a quasi-splitting quasi-monomorphism. Write Aj
.= α(Ai) ⊕ U . Since

α(Ai) is not bounded, U is bounded. Thus, α is a quasi-isomorphism, which is not
possible.

Consequently, σiσδjα ∈ N(E(Ai)) for all σ ∈ E. For every σ ∈ E, we can find
m < ω with (σiσδjα)m ∈ T (E(Ai)). Then, (σδjασi)m+1 = σδjα(σiσδjα)mσi ∈
T (E). Let I = Eδjασi, and observe that we have just shown that I = (I +
T (E))/T (E) is a left nilideal of E/T (E). Hence, QI is a left nil ideal of Q(E/T (E)).
Since the latter ring is Artinian, QI is nilpotent, and the same holds for I. There-
fore, I ⊆ N/T (E), and I ⊆ N .

b) is a consequence Lemma 2.5. �

Lemma 2.7. Let A and B be in S such that SB(A) .= A and SA(B) .= B and
r0(A), r0(B) > 0. Then, there exists an essentially strongly indecomposable direct
quasi-summand of A which is not torsion and is quasi-isomorphic to a direct quasi-
summand of B.

Proof. Without loss of generality, we may assume B = SA(B) and A = SB(A).
Choose non-zero integers s and t such that sA ⊆ A1 ⊕ · · · ⊕ An ⊆ A and

tB ⊆ B1⊕· · ·⊕Bm ⊆ B for essentially strongly indecomposable groups A1, . . . , An

and B1, . . . , Bm. Choose an ideal NB of E(B) containing T (E(B)) such that
NB/T (E(B)) = N(E(B)). By Lemma 2.4, B/NBB is not torsion. Select b ∈ B
such that b + NBB has infinite order. We shall modify the choice of b to find an
element suitable for our purposes.

Since B = SA(B), we can find x1, . . . , x` ∈ A and φ1, . . . , φ` ∈ HA(B) with
b = φ1(x1) + · · ·+ φ`(x`). At least one of the elements φi(xi) +NBB has to have
infinite order, and we may assume that b = φ(a) for some a ∈ A and φ ∈ HA(B).
There exist ai ∈ Ai for i = 1, . . . , n with sa = a1 + · · · + an. Since sb + NBB
has infinite order, and sb = φ(sa) = φ(a1) + · · ·+ φ(an), at least one of the cosets
φ(aj) +NBB has to have infinite order. Without loss of generality, this occurs for
j = 1. Hence, we may assume b = φ(a1) for some a1 ∈ A1.

Because of A1
.= SB(A1), we can find a non-zero integer k, y1, . . . , yr ∈ B and

ψ1, . . . , ψr ∈ HB(A1) with ka1 = ψ1(y1)+ · · ·+ψr(yr). Since kb+NBB has infinite
order, the same holds for at least one of the cosets ψj(yj) + NBB. Therefore, we
may assume b = φψ(y) for some y ∈ B and ψ ∈ HB(A). There exist bj ∈ Bj for
j = 1, . . . ,m with ty = b1 + · · · + bm. Arguing as before, we may assume that
b = φψ(b1) for some b1 ∈ B1. Let γ = ψ|B1 ∈ Hom(B1, A1).

By the remarks preceding Lemma 2.5, the quasi-projections σB
j and embeddings

δB
j satisfy t1B = Σm

j=1δ
B
j σ

B
j . Since tφγ(b1) = Σm

j=1δ
B
j σ

B
j φγ(b1) has infinite order

modulo NBB, the same has to hold for δB
j σ

B
j φγ(b1) for some j ∈ {1, . . . ,m}. We

make this elements our final choice for b.
If B1 6∼ Bj , then δB

j σ
B
j φγσ

B
1 ∈ NB by Lemma 2.6a). But then, σB

1 (b1) = tb1
yields tb = tδB

j σ
B
j φγ(b1) = δB

j σ
B
j φγ(tb1) = δB

j σ
B
j φγσ1(b1) ∈ NBB. Thus, b has

finite order modulo NBB, a contradiction.
Therefore, B1 and Bj are quasi-isomorphic. But then, α = σB

j φγ has to be a
quasi-isomorphism. Otherwise, we can use Lemma 2.6a) to obtain δB

j σ
B
j φγσ

B
1 ∈
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NB as before. Arguing as in the last paragraph, we obtain a contradiction. There-
fore, σB

j φγ is a quasi-isomorphism by Lemma 2.6b); and γ is a quasi-splitting
quasi-monomorphism. Since A1 is essentially strongly indecomposable, this is only
possible if γ is a quasi-isomorphism. �

Theorem 2.8. The following are equivalent for groups A,B ∈ S:
a) A ∼ B.
b) r0(Hom(A,C)) = r0(Hom(B,C)) for all groups C ∈ S.

Proof. It remains to show b) ⇒ a): Observe that

r0(E(B)) = r0(Hom(B,B)) = r0(Hom(A,B)) = r0(Hom(A,SA(B))) <∞, and

r0(E(A)) = r0(Hom(A,A)) = r0(Hom(B,A)) = r0(Hom(A,SB(A))) <∞.

In particular, Hom(A, T (B)) and Hom(B, T (A)) are torsion since otherwise their
torsion-free ranks would be infinite. Hence, A⊕B is self-small by [4, Theorem 2.4].
It follows that every finitely A-generated subgroup of B is self-small since it is an
endomorphic image of a finite power of A⊕B.

The group SA(B) may not be self-small. Hence, choose a finitely A-generated
subgroup U of B with r0(Hom(A,U)) = r0(Hom(A,SA(B))). Because U is self-
small, r0(Hom(A,U)) = r0(Hom(B,U)). Thus, E(B)/Hom(B,U) is torsion as
an abelian group, and there is a non-zero integer d such that d1B ∈ Hom(B,U).
Therefore, dB ⊆ U ⊆ SA(B) ⊆ B. Hence, B .= SA(B) and A .= SB(A).

Let A .= A1 ⊕ . . . ⊕ An and B
.= B1 ⊕ . . . ⊕ Bm for essentially strongly inde-

composable groups A1, . . . , An and B1, . . . , Bm of positive rank. The proof will
proceed by induction on n+m. If n+m = 0, then A and B are torsion, and hence
finite. Clearly, there is nothing to prove. Thus, assume n +m > 0. Without loss
of generality, m > 0.

By Lemma 2.7, we may assume A1 ∼ B1. In particular, r0(Hom(A1, C)) =
r0(Hom(B1, C)) whenever C ∈ S. Moreover,

r0(Hom(A2 ⊕ . . .⊕An, C)) = r0(Hom(A1 ⊕ . . .⊕An, C))− r0(Hom(A1, C)) =

r0(Hom(A,C))− r0(Hom(A1, C)) = r0(Hom(B,C))− r0(Hom(B1, C)) =

r0(Hom(B1 ⊕ . . .⊕Bm, C))− r0(Hom(B1, C)) = r0(Hom(B2 ⊕ . . .⊕Bm, C))

for all self-small groups C. By induction hypothesis, B2⊕ . . .⊕Bm ∼ A2⊕ . . .⊕An.
Consequently, A ∼ B. �

The proof of the last result actually shows that the rank of the test groups C
need not exceed the common rank of A and B:

Corollary 2.9. The following are equivalent for groups A,B ∈ S:
a) A ∼ B.
b) r0(Hom(A,C)) = r0(Hom(B,C)) for all self-small groups C with r0(C) ≤

max(r0(A), r0(B)). �

Corollary 2.9 cannot be extended to determine A and B up to isomorphism:

Example 2.10. There exist non-isomorphic groups A and B in S with r0(A) =
r0(B) = 2 and Hom(A,C) ∼= Hom(B,C) for all C ∈ S with r0(C) ≤ 2.

Proof. By [3, Example 3.5], there exist quasi-isomorphic torsion-free groups A and
B of rank 2 such that Hom(A,D) ∼= Hom(B,D) for all torsion-free groups D of
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rank at most 2, but A 6∼= B. Furthermore, E(A) = E(B) = Zpq for two primes
p 6= q. By [5, Theorem 0.2], we have rp(A) = rp(B) and rq(A) = rq(B).

Suppose that C ∈ S with r0(C) ≤ 2. Write C = Tp(C)⊕Tq(C)⊕C ′. For s = p, q,
we obtain Hom(A, Ts(C)) ∼= ⊕rs(A)Ts(C) ∼= ⊕rs(B)Ts(C) ∼= Hom(B, Ts(C)). Thus,
we may assume Cp = Cq = 0.

Since Ts(C) is finite for all primes s, we have Hom(A, T (C)) = Hom(B, T (C)) =
0, and hence SB(C)∩T (C) = SA(C)∩T (C) = 0. Let U = SA(C)+SB(C). We show
that U is torsion-free. Suppose u ∈ U satisfies nu = 0 for some non-zero n ∈ Z,
coprime with p and q. Write u = φ1(a1) + · · ·+ φk(ak) +ψ1(b1) + · · ·+ψm(bm) for
φ1, . . . , φk ∈ HA(C), ψ1, . . . , ψm ∈ HB(C), a1, . . . ak ∈ A, and b1, . . . bm ∈ B. Since
A and B are quasi-isomorphic, we may assume tA ⊆ B ⊆ A where t = piqj . Then,
tu = φ1(ta1)+· · ·+φk(tak)+ψ1(tb1)+· · ·+ψm(tbm). Since φ1|B, . . . , φk|B ∈ HB(C),
we obtain tu ∈ SB(C). Since (n, t) = 1, there are x, y ∈ Z with 1 = xt + yn.
Then, u = xtu + ynu = xtu ∈ SB(C) ∩ T (C) = 0. Hence, U is torsion-free; and
Hom(A,C) = Hom(A,U) ∼= Hom(B,U) = Hom(B,C) as desired. �

A finite torsion-free rank group A is self-small if and only if every Tp(A) of A
is finite for all primes p and there exists (for every) a full free subgroup F ≤ A
such that A/F is p-divisible for almost all p with Tp(A) 6= 0. For A ∈ S, define
the support of A to be S(A) = {p ∈ P | Tp(A) 6= 0}, and the divisibility of A the
quasi-equality class D(A) of all primes p such that A/F is p-divisible, where F is
a fixed full free subgroup of A. For a set W of primes, consider the class S(W ) =
{A ∈ S | S(A)

.
⊆W

.
⊆ D(A)}, which is closed with respect direct summands, finite

direct sums, finitely S(W )-generated subgroups, and quasi-isomorphisms. Observe
that, modulo finite direct summands, S(∅) is the class of all finite rank torsion free
groups, and S(P) is the class of quotient divisible groups. Arguing as in the proof
of Theorem 2.8, we obtain

Corollary 2.11. The following are equivalent for groups A and B in S(W ):

a) A ∼ B.
b) r0(Hom(A,C)) = r0(Hom(B,C)) for all groups C ∈ S(W ) with r0(C) ≤

max(r0(A), r0(B)). �

3. Self-small groups Determined by Their Right Orthogonal Classes

Let W be a set of primes, and consider A ∈ S(W ). Suppose that C ∈ S(W ) is a
subgroup of A. The symbol C] denotes the subgroup of A containing C such that
C]/C is the sum of the torsion part of the maximal divisible subgroup of A/C and
the p-components of A/C for all primes p not in S(A).

Lemma 3.1. With the above notations, C] and A/C] are in S(W ).

Proof. It is obvious that S(A/C]) ⊆ S(A). Let F1 be a full free subgroup of C. If
F2 is a free subgroup of A such that F = F1 ⊕F2 is a full free subgroup of A, then
(F2 + C])/C] is a full free subgroup of A/C]. Hence, [A/C]]/[(F2 + C])/C])] ∼=
A/(F2 + C]) is an epimorphic image of A/F , and A/C] ∈ S(W ).

Moreover, the middle term in the exact sequence 0 → C/F1 → C]/F1 →
C]/C → 0 is torsion and divisible for almost all p ∈ W since the groups C/F1

and C]/C are p-divisible groups for almost all p ∈W . Therefore C] ∈ S(W ). �
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If A,X ∈ S(W ) then A ⊕ X ∈ S(W ), hence T (Hom(A,X)) = Hom(A, T (X)).
Therefore every homomorphism A→ T (X) has finite image. Let

A⊥ = {X ∈ S(W ) | QHom(A,X) = 0} = {X ∈ S(W ) | Hom(A,X) is torsion}.

The next results outlines the basic properties of the classes A⊥.

Lemma 3.2. Let W be a set of primes.
a) If A,B ∈ S(W ), then B ∈ A⊥ if and only if the image SA(B) is torsion.
b) If A1, . . . , An ∈ S(W ) then (⊕n

i=1Ai)⊥ =
⋂n

i=1A
⊥
i .

c) A⊥ = (A⊕Q)⊥ for all A ∈ S(W ).
d) If A, B ∈ S(W ) such that there exists a homomorphism α : A → B with

B/α(A) a torsion group, then A⊥ ⊆ B⊥.
e) If A and B are quasi-isomorphic groups in S(W ) then A⊥ = B⊥. �

The next result is based on ideas from [13, Section 4] and from [10, Proposition
5.6].

Proposition 3.3. If A ∈ S(W ) then there exists a group C ∈ S(W ) such that:
i) C is an epimorphic image of A,
ii) C has no non-zero nilpotent quasi-endomorphisms, and
iii) A⊥ = C⊥.

Proof. If there exists an endomorphism α of A such that α(A) is not torsion, but
α2 = 0, then Im(α) ⊆ Ker(α) and A/Ker(α) ∼= Im(α) are in S(W ). Moreover,
[A/Im(α)]/[Ker(α)/Im(α)] ∼= A/Ker(α) ∈ S(W ); and the support of the group
[A/Im(α)]/[Ker(α)/Im(α)] is contained in S(A). Consequently, Ker(α)/Im(α) con-
tains the torsion part of the maximal divisible subgroup of A/Im(α) and the p-
components of A/Im(α) for all primes p not in S(A). Moreover, Im(α)] ⊆ Ker(α).
Let A′ = A/Im(α)] and π : A→ A′ be the canonical epimorphism.

Consider a group X in S(W ). If we can find a homomorphism f : A → X
such that Im(f) is not torsion, then A/Ker(f) ∼= Im(f) ∈ S(W ). The canonical
epimorphism ρ : A → A/Ker(f) satisfies Im(ρα) = [Im(α) + Ker(f)]/Ker(f) ∈
S(W ). If the latter is torsion, then it has to be finite. Choose a non-zero integer k
with Im(kα) ⊆ Ker(f). We observe that the torsion part ofA/Ker(f) is reduced and
S(A/Ker(f)) ⊆ S(A). Then, Im(kα)] ⊆ Ker(f), and f induces a homomorphism
f : A/Im(kα)] → X defined by f(a+ Im(kα)]) = f(a), whose image is not torsion.
On the other hand, if (Im(α) + Ker(f))/Ker(f) is not torsion, then consider the
homomorphism α : A/Im(α)] → Ker(α) defined by α(a + Im(α)]) = α(a). Let
ι : Ker(α) → B′ be the inclusion map; and consider fια : A/Im(α)] → X. Choose
a′ = a + Im(α)] ∈ A/Im(α)] in such a way that fια(ka′) = 0 for some non-zero
integer k. Then, kα(a) ∈ Ker(f). Hence, there exists x ∈ A/Im(α)] such that
fια(x) has infinite order.

Consequently, Hom(A/Im(α)], X) is not torsion; and (A/Im(α)])⊥ ⊆ A⊥. Since
the other inclusion is obvious, (A/Im(α)])⊥ = A⊥ and r0(A/Im(α)]) < r0(A). If
A′ = A/Im(α)] has non-zero nilpotent quasi-endomorphisms, we can repeat this
procedure to find a group A′′ ∈ S(W ) with A′′⊥ = A⊥ and r0(A′′) < r0(A′) <
r0(A). This process has to stop after a finite number of steps, since r0(A) is finite.
Hence, there exists a group C ∈ S(W ) which is an epimorphic image of A such
that C⊥ = A⊥ and N(E(C)) = 0. This C satisfies ii) as a consequence of Lemma
2.6. �
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Theorem 3.4. The following are equivalent for a group A ∈ S(W ):
a) A ∼ B whenever B ∈ S(W ) with A⊥ = B⊥;
b) A ∼ (⊕n

i=1Ai)⊕Qr, where Ai are essentially strongly indecomposable groups
such that

i) QE(Ai) is a division ring for all i = 1, . . . , n,
ii) Hom(Ai, Aj) is torsion for all i 6= j,
iii) If a group C ∈ S(W ) has torsion-free rank at most r and is an epimor-

phic image of some Ai for some i, then C is a sum of a (torsion-free)
divisible group and a finite group.

Proof. a) ⇒ b) : We may assume that A = A′ ⊕ Qr, where A′ is reduced and
A′ = ⊕n

i=1Ai. If QE(A′) has a non-zero nilpotent element then, as in the proof
of Proposition 3.3, there exists C ∈ S(W ) such that A′⊥ = C⊥ and s = r0(A′) −
r0(C) > 0. Then A⊥ = (C ⊕ Qr+s)⊥, a contradiction. By Lemma 2.6, A satisfies
conditions i) and ii). Suppose that Ai/N = C ∈ S(W ) and r0(C) ≤ r. Then
A⊥ = A⊕C ⊕Qr−r0(C). Since C ∼ Qr0(C) because of a), we obtain that iii) holds
too.
b) ⇒ a) : We consider direct decompositions A = A′ ⊕ Qr and B = B′ ⊕ Qs

with A′ and B′ reduced groups. We may assume A′ = ⊕n
i=1Ai, where the Ai’s are

essentially strongly indecomposable groups which verify i), ii) and iii). Then, A′⊥ =
A⊥ = B⊥ = B′⊥. Moreover, there exists a group C ∈ S(W ) as in Proposition 3.3
such that B⊥ = C⊥.

As a consequence of Lemma 2.6, we may assume that C = ⊕s
i=1Ci, where the

rings QE(Ci) are division rings and Hom(Ci, Cj) is torsion for all i 6= j. Let
j ∈ {1, . . . , s}. Since Hom(C,Cj) is not torsion, there exists fj : A′ → Cj such
that Im(fj) is not torsion. Because Im(fj) ∈ S(W ), we can find a homomorphism
g : C → Im(fj) whose image is not torsion. Since Im(fj) ⊆ Cj and g(⊕i 6=jCi) is a
finite group, g(Cj) is not torsion either; and the restriction of g to Cj represents a
non-zero quasi-endomorphism of Cj . Therefore, it has to be a quasi-epimorphism;
and Im(g) has finite index in Cj . Since the same holds for Im(fj), we obtain
SA′(C) .= C. In the same way, SC(A′) .= A′. By Lemma 2.7, we may assume
A1 ∼ C1.

If j ∈ {2, . . . , s}, then fj(A1) is a finite group. Hence, the restriction fj|⊕n
i=2Ai

:
⊕n

i=2Ai → Cj is a quasi-epimorphism. Then, S⊕n
i=2Ai

(⊕s
j=2Cj)

.= ⊕s
i=2Cj , and in

the same way we obtain S⊕s
i=2Cj

(⊕n
i=2Ai)

.= ⊕n
i=2Ai. Lemma 2.7 once more allows

us to assume A2 ∼ C2. We repeat these arguments for all j, and obtain A′ ∼ C
after a finite number of steps.

Suppose that B′ has an endomorphism α such that α 6= α2 = 0 in QE(B′).
In view of the proof of Proposition 3.3, we may assume that C is an epimorphic
image of B′/Im(α)]. Then r0(Im(α)]) ≤ r0(B′) − r0(C) ≤ r0(A) − r0(C) = r.
Since we can view α as a map from B′ to Im(α)], there exists a homomorphism
β : A′ → Im(α)] which has a non-torsion image. Using iii), Im(β) ≤ B′ is divisible.
But this is not possible since B′ is reduced. Therefore NB′(E(B′)/T (E(B′))) = 0.
Consequently, B′ ∼ C ∼ A′, and B ∼ A. �
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