QUASI-ISOMORPHISMS AND GROUPS OF QUASI-HOMOMORPHISMS

ULRICH ALBRECHT AND SIMION BREAZ

Abstract. This paper investigates to which extent a self-small mixed Abelian group G of finite torsion-free rank is determined by the groups $\text{Hom}(G, C)$ where C is chosen from a suitable class \mathcal{C} of Abelian groups. We show that G is determined up to quasi-isomorphism if \mathcal{C} is the class of all self-small mixed groups with $r_0(C) \leq r_0(G)$. Several related results are given, and the dual problem of orthogonal classes is investigated.

1. Introduction

Problem 34 in [8] asks whether it is possible to find a set \mathcal{C} of Abelian groups with the property that two Abelian groups A and B are isomorphic provided that $\text{Hom}(A, C) \cong \text{Hom}(B, C)$ for all $C \in \mathcal{C}$. The negative answer given in [3] raised the question to identify properties of Abelian groups which are determined by $\text{Hom}(\cdot, \mathcal{C})$ when \mathcal{C} is chosen from a class \mathcal{C}. For instance, if A is a reduced p-group, and \mathcal{C} is the class of all p-groups, then the groups $\{\text{Hom}(A, C) | C \in \mathcal{C}\}$ determine the finite Ulm-Kaplansky invariants $f_\sigma(A)$ for $\sigma \geq \omega$ [1]. On the other hand, if \mathcal{C} is the class of torsion-free groups of finite rank, then the invariants $\{r_0(\text{Hom}(A, C)) | C \in \mathcal{C}\}$ determine a group $A \in \mathcal{C}$ up to quasi-isomorphism, but not necessarily up to isomorphism [3].

The results in [1] also addressed the question if there are classes of mixed groups which are determined up to isomorphism by homomorphism groups. For instance, two groups A and B in \mathcal{G} are isomorphic if $\text{Hom}(A, G) \cong \text{Hom}(B, G)$ for all $G \in \mathcal{G}$. Here, \mathcal{G} is the class of all self-small groups of finite torsion-free rank G such that $G/T(G)$ is divisible where $T(G)$ denotes the torsion subgroup of G. Self-small groups were introduced by Arnold and Murley in [6] as the groups A with the property that $\text{Hom}(A, A^{(I)})$ and $\text{Hom}(A, A)^{(I)}$ are canonically isomorphic for all index-sets I. Although the class \mathcal{S} of all self-small groups of finite torsion-free rank is closed with respect direct summands and endomorphic images [6], it is not closed with respect direct sums [2]. Further information on self-small groups can be found in [7].

Theorem 2.8 shows that a group $A \in \mathcal{S}$ is determined up to quasi-isomorphism by the torsion-free rank of the groups $\text{Hom}(A, C)$ where $C \in \mathcal{S}$ (and $r_0(C) \leq r_0(A)$). Moreover, groups $A \in \mathcal{S}$ with $r_0(A) = 1$ are determined up to isomorphism in this way. However, this fails in general (Example 2.10).

Section 3 addresses a question closely related to Problem 34: Given a self-small group A, can we find a set \mathcal{C} containing A and a property P such that A is determined up to isomorphism by $\text{Ker}(\mathbb{Q}\text{Hom}(A, \cdot)) \cap \mathcal{C}$ and P? Annihilator classes like...
these were first considered by Schultz in [11]; and Wickless solved a dual problem in [13]. Theorem 3.4 gives an answer for some natural arising classes of self-small groups.

For the benefit of the reader, we give a short summary of the notation used. If A is a group, then the symbol $T_p(A)$ indicates the p-component of A, and $\overline{A} = A/T(A)$. The endomorphism ring of A is $E = E(A)$. There exists an adjoint pair (H_A, T_A) of functors between the category of abelian groups and the category of right E-modules defined by $H_A(G) = \text{Hom}(A,G)$ and $T_A(M) = M \otimes_E A$ for all abelian groups A and all right E-modules M. These functors induce natural maps $\theta_G : T_AH_A(G) \to G$ and $\Phi_M : M \to H_A T_A(M)$ defined by $\theta_G(\alpha \otimes a) = \alpha(a)$ and $[\Phi_M(x)](a) = x \otimes a$ for all $a \in A$, $x \in M$, and $\alpha \in H_A(G)$. The A-socle of G, denoted by $S_A(G)$, is the image of θ_G. If C is a class of groups, then a group G is (finitely) C-generated if it is an epimorphic image of a (finite) direct sum of groups in C. It is easy to see that G is A-generated if and only if $S_A(G) = G$. The symbol \sim denotes quasi-isomorphisms, i.e. isomorphisms in $\mathbb{Q}Ab$. Two subgroups G and H of a group A are quasi-equal, denoted by $G \simeq H$, if $G \cap H$ is of finite index in G and in H. Finally, if V and W are sets such that all but finitely many elements of V are contained in W, then V is quasi-contained in W. This is denoted by $V \varsubsetneq W$. The sets V and W are quasi-equal, denoted by $V \doteq W$, if $V \subseteq W$ and $W \subseteq V$.

2. Self-small Groups Determined by Homomorphism Groups

We begin our discussion on how far the structure of a mixed group A is determined by the groups $\text{Hom}(A,C)$ with the case that the test groups C have rank 1:

Proposition 2.1. Let A and B be in S such that $\text{Hom}(A,C) \cong \text{Hom}(B,C)$ for all $C \in G$ with $r_0(C) = 1$. Then,

i) $T(A) \cong T(B)$,

ii) $r_p(A/T(A)) = r_p(B/T(B))$ for all primes p,

iii) $r_0(A) = r_0(B)$.

Proof. Observe that $T_p(A)$ and $T_p(B)$ are finite for all primes p since A and B are in S. Choose $n < \omega$ with $p^n T_p(A) = p^n T_p(B) = 0$, and select a group $C \in G$ with $T_p(C) = \mathbb{Z}/p^{n+1} \mathbb{Z}$ and $r_0(G) = 1$. If $C = T_p(C) \oplus C^p$ such that multiplication by p is an automorphism of C^p, then $\text{Hom}(A,C) = \text{Hom}(A,T_p(C)) \cong \text{Hom}(A,C^p)$, and multiplication by p induces an automorphism on $\text{Hom}(A,C^p)$. Therefore, $T_p(\text{Hom}(A,C)) = T_p(A)T_p(C))$. Since $T_p(A)$ is finite, $A = T_p(A) \oplus A'$, and $\text{Hom}(A', T_p(C)) \cong \text{Hom}(A/T(A), T_p(C)) \cong [\mathbb{Z}/p^{n+1} \mathbb{Z}]^{n_p}$ where $n_p = r_p(A/T(A))$. On the other hand, $\text{Hom}(T_p(A), T_p(C)) \cong T_p(A)$. Thus, $T_p(\text{Hom}(A,C)) \cong T_p(A) \oplus [\mathbb{Z}/p^{n+1} \mathbb{Z}]^{n_p}$. Similarly, $T_p(\text{Hom}(B,C)) \cong T_p(B) \oplus [\mathbb{Z}/p^{n+1} \mathbb{Z}]^{n_p}$ where $m_p = r_p(B/T(B))$. Since $T_p(A)$ and $T_p(B)$ contain no direct summand isomorphic to $\mathbb{Z}/p^{n+1} \mathbb{Z}$, we have $T_p(A) \cong T_p(B)$ and $n_p = m_p$.

Furthermore, $Q \in G$ yields $\text{Hom}(A,Q) \cong Q^{r_0(A)}$ and $\text{Hom}(B,Q) \cong Q^{r_0(B)}$. Thus, $r_0(A) = r_0(B)$. \square

The converse of this proposition is not valid.

Example 2.2. There exist two groups $A, B \in S$ and a group $G \in G$ such that A and B verify i), ii) and iii) in Proposition 2.1 but $\text{Hom}(A,G) \ncong \text{Hom}(B,G)$.
Proof. Let $A = \mathbb{Z}$ and B a rank 1 torsion-free group of type $(1, \ldots, 1, \ldots)$. If $G \in \mathcal{G}$ is a group such that $T_p(G) \neq 0$ for infinitely many primes p, it is not hard to see that $\text{Hom}(A, G) \cong G$ is countable, while $\text{Hom}(B, G)$ is uncountable since it contains a subgroup isomorphic to $\text{Hom}(\oplus_p \mathbb{Z}/p\mathbb{Z}, T(G))$. \hfill \square

Corollary 2.3. Let A and B be self-small groups with $r_0(A) = r_0(B) = 1$. Then, $A \cong B$ if and only if $\text{Hom}(A, C) \cong \text{Hom}(B, C)$ for all $C \in \mathcal{S}$ with $r_0(C) = 1$.

Proof. Since $0 \neq \text{Hom}(A, \mathfrak{A}) \cong \text{Hom}(B, \mathfrak{A})$, $\text{type}(\mathfrak{B}) \leq \text{type}(\mathfrak{A})$. By symmetry, \mathfrak{A} and \mathfrak{B} have the same type. Moreover, $T(A) \cong T(B)$ by Proposition 2.1. Hence, [2, Corollary 4.5] yields $A \cong B$. \hfill \square

Lemma 2.4. Let $A \in \mathcal{S}$ with $r_0(A) > 0$. If N is the two-sided ideal of E containing $T(E)$ such that $N/T(E) = N(E/T(E))$, then A/NA is not torsion.

Proof. Suppose that A/NA is torsion. We show that A/N^kA is torsion for all $k < \omega$ by induction on k. Suppose that A/N^kA is a torsion group. The exact sequence $0 \rightarrow N^{k+1}/N^{k+1} \rightarrow E/N^{k+1} \rightarrow E/N^{k} \rightarrow 0$ induces $T_A(N^{k+1}/N^k) \rightarrow T_A(E/N^k) \rightarrow 0$ in which $T_A(E/N^k) \cong A/N^kA$ is torsion. Moreover, N^{k+1}/N^k is an E/N-module, and there is an exact sequence $\oplus_i E/N \rightarrow N^{k+1}/N^k \rightarrow 0$ from which we obtain that $T_A(N^{k+1}/N^k)$ is torsion as an epimorphic image of the torsion group $\oplus_i T_A(E/N) \cong \oplus_i A/NA$. Then $A/N^{k+1}A$ is torsion.

Since $N(E/T(E)) = N_f(E) = 0$, there is $\ell < \omega$ with $N_f \subseteq T(E)$. Hence, $N^\ell A \subseteq T(E(A)) \subseteq T(A)$ is torsion and the same holds for A, a contradiction. \hfill \square

If $A \in \mathcal{S}$, then there are a non-zero integer k and essentially strongly indecomposable subgroups A_1, \ldots, A_n of A such that $r_0(A_i) > 0$ for all $i = 1, \ldots, n$ and $kA \subseteq A_1 \oplus \cdots \oplus A_n \subseteq A$. These essentially strongly indecomposable groups are unique up to quasi-isomorphisms by [7, Theorem 2.9]. Let $\delta_i : A_i \rightarrow A$ be the inclusion map. For the projection maps $\pi_i : A_1 \oplus \cdots \oplus A_n \rightarrow A_i$, define $\sigma_i : A \rightarrow A_i$ by $\sigma_i(a) = \pi_i(ka)$. We obtain $k1_A = \sum_{i=1}^n \delta_i \sigma_i$, and $k1_{A_i} = \sigma_i \delta_i$. If necessary, a superscript referring to A will be added to these maps.

Lemma 2.5. Let A and B be quasi-isomorphic, essentially strongly indecomposable groups in \mathcal{S}. If $\alpha : A \rightarrow B$ is a homomorphism then $\text{Ker}(\alpha)$ is bounded if and only if α is a quasi-isomorphism.

Proof. Suppose that $\text{Ker}(\alpha)$ is bounded. If $\beta : B \rightarrow A$ is a quasi-isomorphism, then $\beta \alpha : A \rightarrow A$ has a bounded kernel. Thus, $\beta \alpha$ is a quasi-monomorphism, which cannot be nilpotent. Since the quasi-endomorphism ring of A is a local finite-dimensional \mathbb{Q}-algebra, $\beta \alpha$ is a quasi-isomorphism, and the same holds for α. The converse implication is obvious (see [12]). \hfill \square

Lemma 2.6. For $A \in \mathcal{S}$, let N be the ideal of E containing $T(E)$ with $N/T(E) = N(E/T(E))$. If $\alpha \in \text{Hom}(A_1, A_2)$, then the following hold:

a) If α is not a quasi-isomorphism, then $\delta \alpha \sigma_1 \in N$.

b) If A_i and A_j are quasi-isomorphic, and if $\text{Ker}(\alpha)$ is bounded, then α is a quasi-isomorphism.

Proof. a) By [5, Proposition 9.1], $N/T(E)$ is pure in $E/T(E)$, and $QN/T(E) = N(QE/T(E))$. Moreover, $N/T(E) = N(QE/T(E)) \cap E/T(E)$. In particular, E/N is torsion-free as an abelian group.
If $\delta_i\alpha_i \notin N$, then $\delta_i\alpha_i$ has infinite order. Suppose there is $\sigma \in E$ such that $\sigma\delta_i\alpha_i \notin N(E(A_i))$. Since $QE(A_i)$ is a local ring, $\sigma\delta_i\alpha_i$ is a unit of $QE(A_i)$. Thus, there exist a non-zero integer k and a map $\beta \in E(A_i)$ such that $\beta\sigma\delta_i\alpha_i = k1_{A_i} \in T(E(A_i))$. Furthermore, we can find an integer t with $t\beta\sigma\delta_i\alpha_i = tk1_{A_i}$. Thus, α is a quasi-splitting quasi-monomorphism. Write $A_j \cong \alpha(A_i) \oplus U$. Since $\alpha(A_i)$ is not bounded, U is bounded. Thus, α is a quasi-isomorphism, which is not possible.

Consequently, $\sigma\delta_i\alpha_i \in N(E(A_i))$ for all $\sigma \in E$. For every $\sigma \in E$, we can find $m < \omega$ with $(\sigma\delta_i\alpha_i)^m \in T(E(A_i))$. Then, $(\sigma\delta_i\alpha_i)^{m+1} = \sigma\delta_i\alpha(\sigma\delta_i\alpha)^m \sigma_i \in T(E)$. Let $I = E\delta_i\alpha_i$, and observe that we have just shown that $T = (I + T(E))/T(E)$ is a left nilideal of $E/T(E)$. Hence, QT is a left nil ideal of $Q(E/T(E))$. Since the latter ring is Artinian, QT is nilpotent, and the same holds for T. Therefore, $T \subseteq N(T(E))$, and $I \subseteq N$.

b) is a consequence Lemma 2.5.

Lemma 2.7. Let A and B be in S such that $S_B(A) \cong A$ and $S_A(B) \cong B$ and $r_0(A), r_0(B) > 0$. Then, there exists an essentially strongly indecomposable direct quasi-summand of A which is not torsion and is quasi-isomorphic to a direct quasi-summand of B.

Proof. Without loss of generality, we may assume $B = S_A(B)$ and $A = S_B(A)$.

Choose non-zero integers s and t such that $sA \subseteq A_1 \oplus \cdots \oplus A_n \subseteq A$ and $tB \subseteq B_1 \oplus \cdots \oplus B_m \subseteq B$ for essentially strongly indecomposable groups A_1, \ldots, A_n and B_1, \ldots, B_m. Choose an ideal N_B of $E(B)$ containing $T(E(B))$ such that $N_B/T(E(B)) = N(E(B))$. By Lemma 2.4, $B/N_B B$ is not torsion. Select $b \in B$ such that $b + N_B B$ has infinite order. We shall modify the choice of b to find an element suitable for our purposes.

Since $B = S_A(B)$, we can find $x_1, \ldots, x_{\ell} \in A$ and $\phi_1, \ldots, \phi_{\ell} \in H_A(B)$ with $b = \phi_1(x_1) + \cdots + \phi_{\ell}(x_{\ell})$. At least one of the elements $\phi_i(x_i) + N_B B$ has to have infinite order, and we may assume that $b = \phi(a)$ for some $a \in A$ and $\phi \in H_A(B)$. There exist $a_i \in A_i$ for $i = 1, \ldots, n$ with $sa = a_1 + \cdots + a_n$. Since $sb + N_B B$ has infinite order, and $sb = \phi(sa) = \phi(a_1) + \cdots + \phi(a_n)$, at least one of the cosets $\phi(a_j) + N_B B$ has to have infinite order. Without loss of generality, this occurs for $j = 1$. Hence, we may assume $b = \phi(a_1)$ for some $a_1 \in A_1$.

Because of $A_1 \cong S_B(A_1)$, we can find a non-zero integer $k, y_1, \ldots, y_{m} \in B$ and $\psi_1, \ldots, \psi_{m} \in H_B(A_1)$ with $ka_1 = \psi_1(y_1) + \cdots + \psi_{m}(y_{m})$. Since $k + N_B B$ has infinite order, the same holds for at least one of the cosets $\psi_j(y_j) + N_B B$. Therefore, we may assume $b = \phi\psi(y)$ for some $y \in B$ and $\psi \in H_B(A)$. There exist $b_j \in B_j$ for $j = 1, \ldots, m$ with $t_{b_j} = b_1 + \cdots + b_m$. Arguing as before, we may assume that $b = \phi\psi(b_1)$ for some $b_1 \in B_1$. Let $\gamma = \psi_{b_1} \in \Hom(B_1, A_1)$.

By the remarks preceding Lemma 2.5, the quasi-projections σ^B_j and embeddings δ^B_j satisfy $t_{b_1} = \sum_{j=1}^m \delta^B_j \sigma^B_j \phi \gamma(1)$. Since $t_\phi \gamma(b_1) = \sum_{j=1}^m \delta^B_j \sigma^B_j \phi \gamma(1)$ has infinite order modulo $N_B B$, the same has to hold for $\delta^B_j \sigma^B_j \phi \gamma(1)$ for some $j \in \{1, \ldots, m\}$. We make this elements our final choice for b.

If $B_1 \neq B_j$, then $\delta^B_1 \sigma^B_1 \phi \gamma(b_1) \in N_B$ by Lemma 2.6a). But then, $\sigma^B_1(b_1) = t_{b_1}$ yields $t_{b_1} = t\delta^B_1 \sigma^B_1 \phi \gamma(1) = \delta^B_1 \sigma^B_1 \phi \gamma(b_1) = \delta^B_1 \sigma^B_1 \phi \sigma \gamma(1) \in N_B B$. Thus, b has finite order modulo $N_B B$, a contradiction.

Therefore, B_1 and B_j are quasi-isomorphic. But then, $\alpha = \sigma^B_j \phi \gamma$ has to be a quasi-isomorphism. Otherwise, we can use Lemma 2.6a) to obtain $\delta^B_j \sigma^B_j \phi \gamma(1) \in N_B B$. This is a contradiction. Therefore, B_1 and B_j are quasi-isomorphic. But then, $\alpha = \sigma^B_j \phi \gamma$ has to be a quasi-isomorphism. Otherwise, we can use Lemma 2.6a) to obtain $\delta^B_j \sigma^B_j \phi \gamma(1) \in N_B B$. This is a contradiction. Therefore, B_1 and B_j are quasi-isomorphic. But then, $\alpha = \sigma^B_j \phi \gamma$ has to be a quasi-isomorphism.
N_{\alpha} as before. Arguing as in the last paragraph, we obtain a contradiction. Therefore, $\sigma_{\beta}^\# \phi \gamma$ is a quasi-isomorphism by Lemma 2.6b); and γ is a quasi-splitting quasi-monomorphism. Since A_1 is essentially strongly indecomposable, this is only possible if γ is a quasi-isomorphism.

Theorem 2.8. The following are equivalent for groups $A, B \in S$:

a) $A \sim B$.

b) $r_0(\text{Hom}(A, C)) = r_0(\text{Hom}(B, C))$ for all groups $C \in S$.

Proof. It remains to show b) \Rightarrow a): Observe that

$$r_0(E(B)) = r_0(\text{Hom}(B, B)) = r_0(\text{Hom}(A, B)) = r_0(\text{Hom}(A, S_A(B))) < \infty,$$

and

$$r_0(E(A)) = r_0(\text{Hom}(A, A)) = r_0(\text{Hom}(B, A)) = r_0(\text{Hom}(A, S_B(A))) < \infty.$$

In particular, $\text{Hom}(A, T(B))$ and $\text{Hom}(B, T(A))$ are torsion since otherwise their torsion-free ranks would be infinite. Hence, $A \oplus B$ is self-small by [4, Theorem 2.4]. It follows that every finitely A-generated subgroup of B is self-small since it is an endomorphic image of a finite power of $A \oplus B$.

The group $S_A(B)$ may not be self-small. Hence, choose a finitely A-generated subgroup U of B with $r_0(\text{Hom}(A, U)) = r_0(\text{Hom}(A, S_A(B)))$. Because U is self-small, $r_0(\text{Hom}(A, U)) = r_0(\text{Hom}(B, U))$. Thus, $E(B)/\text{Hom}(B, U)$ is torsion as an abelian group, and there is a non-zero integer d such that $d1_B \in \text{Hom}(B, U)$. Therefore, $dB \subseteq U \subseteq S_A(B) \subseteq B$. Hence, $B \cong S_A(B)$ and $A \cong S_B(A)$.

Let $A \cong A_1 \oplus \ldots \oplus A_n$ and $B \cong B_1 \oplus \ldots \oplus B_m$ for essentially strongly indecomposable groups A_1, \ldots, A_n and B_1, \ldots, B_m of positive rank. The proof will proceed by induction on $n + m$. If $n + m = 0$, then A and B are torsion, and hence finite. Clearly, there is nothing to prove. Thus, assume $n + m > 0$. Without loss of generality, $m > 0$.

By Lemma 2.7, we may assume $A_1 \sim B_1$. In particular, $r_0(\text{Hom}(A_1, C)) = r_0(\text{Hom}(B_1, C))$ whenever $C \in S$. Moreover,

$$r_0(\text{Hom}(A_2 \oplus \ldots \oplus A_n, C)) = r_0(\text{Hom}(A_1 \oplus \ldots \oplus A_n, C)) - r_0(\text{Hom}(A_1, C)) = r_0(\text{Hom}(A, C)) - r_0(\text{Hom}(A_1, C)) = r_0(\text{Hom}(B, C)) - r_0(\text{Hom}(B_1, C)) = r_0(\text{Hom}(B_1 \oplus \ldots \oplus B_m, C)) - r_0(\text{Hom}(B_1, C)) = r_0(\text{Hom}(B_2 \oplus \ldots \oplus B_m, C))$$

for all self-small groups C. By induction hypothesis, $B_2 \oplus \ldots \oplus B_m \sim A_2 \oplus \ldots \oplus A_n$. Consequently, $A \sim B$.

The proof of the last result actually shows that the rank of the test groups C need not exceed the common rank of A and B:

Corollary 2.9. The following are equivalent for groups $A, B \in S$:

a) $A \sim B$.

b) $r_0(\text{Hom}(A, C)) = r_0(\text{Hom}(B, C))$ for all self-small groups C with $r_0(C) \leq \max(r_0(A), r_0(B))$.

Example 2.10. There exist non-isomorphic groups A and B in S with $r_0(A) = r_0(B) = 2$ and $\text{Hom}(A, C) \cong \text{Hom}(B, C)$ for all $C \in S$ with $r_0(C) \leq 2$.

Proof. By [3, Example 3.5], there exist quasi-isomorphic torsion-free groups A and B of rank 2 such that $\text{Hom}(A, D) \cong \text{Hom}(B, D)$ for all torsion-free groups D of
rank at most 2, but \(A \not\sim B \). Furthermore, \(E(A) = E(B) = \mathbb{Z}_m \) for two primes \(p \neq q \). By [5, Theorem 0.2], we have \(r_p(A) = r_p(B) \) and \(r_q(A) = r_q(B) \).

Suppose that \(C \in S \) with \(r_0(C) \leq 2 \). Write \(C = T_p(C) \oplus T_q(C) \oplus C' \). For \(s = p, q \), we obtain \(\text{Hom}(A, T_s(C)) \cong \oplus_{r_s(A)} T_s(C) \cong \oplus_{r_s(B)} T_s(C) \cong \text{Hom}(B, T_s(C)) \). Thus, we may assume \(C_p = C_q = 0 \).

Since \(T_s(C) \) is finite for all primes \(s \), we have \(\text{Hom}(A, T(C)) = \text{Hom}(B, T(C)) = 0 \), and hence \(S_B(C) \cap T(C) = S_A(C) \cap T(C) = 0 \). Let \(U = S_A(C) + S_B(C) \). We show that \(U \) is torsion-free. Suppose \(u \in U \) satisfies \(nu = 0 \) for some non-zero \(n \in \mathbb{Z} \), coprime with \(p \) and \(q \). Write \(u = \phi_1(a_1) + \cdots + \phi_k(a_k) + \psi_1(b_1) + \cdots + \psi_m(b_m) \) for \(\phi_1, \ldots, \phi_k \in H_A(C), \psi_1, \ldots, \psi_m \in H_B(C), a_1, \ldots, a_k \in A, \) and \(b_1, \ldots, b_m \in B \). Since \(A \) and \(B \) are quasi-isomorphic, we may assume \(tA \subseteq B \subseteq A \) where \(t = p^aq^q \). Then, \(tu = \phi_1(ta_1) + \cdots + \phi_k(ta_k) + \psi_1(tb_1) + \cdots + \psi_m(tb_m) \). Since \(\phi_1|B, \ldots, \phi_k|B \in H_B(C) \), we obtain \(tu \in S_B(C) \). Since \((n, t) = 1 \), there are \(x, y \in \mathbb{Z} \) with \(1 = xt + ny \). Then, \(u = xtu + ynu = xtu \in S_B(C) \cap T(C) = 0 \). Hence, \(U \) is torsion-free; and \(\text{Hom}(A, C) = \text{Hom}(A, U) \cong \text{Hom}(B, U) = \text{Hom}(B, C) \) as desired. \(\square \)

A finite torsion-free rank group \(A \) is self-small if and only if every \(T_p(A) \) of \(A \) is finite for all primes \(p \) and there exists (for every) a full free subgroup \(F \leq A \) such that \(A/F \) is \(p \)-divisible for almost all \(p \) with \(T_p(A) \neq 0 \). For \(A \in S \), define the support of \(A \) to be \(S(A) = \{ p \in \mathbb{P} \mid T_p(A) \neq 0 \} \), and the divisibility of \(A \) the quasi-equality class \(D(A) \) of all primes \(p \) such that \(A/F \) is \(p \)-divisible, where \(F \) is a fixed full free subgroup of \(A \). For a set \(W \) of primes, consider the class \(S(W) = \{ A \in S \mid S(A) \subseteq W \subseteq D(A) \} \), which is closed with respect to direct summands, finite direct sums, finitely \(S(W) \)-generated subgroups, and quasi-isomorphisms. Observe that, modulo finite direct summands, \(S(\emptyset) \) is the class of all finite rank torsion free groups, and \(S(\mathbb{P}) \) is the class of quotient divisible groups. Arguing as in the proof of Theorem 2.8, we obtain

Corollary 2.11. The following are equivalent for groups \(A \) and \(B \) in \(S(W) \):

a) \(A \sim B \).

b) \(r_0(\text{Hom}(A, C)) = r_0(\text{Hom}(B, C)) \) for all groups \(C \in S(W) \) with \(r_0(C) \leq \max(r_0(A), r_0(B)) \). \(\square \)

3. **Self-small groups Determined by Their Right Orthogonal Classes**

Let \(W \) be a set of primes, and consider \(A \in S(W) \). Suppose that \(C \in S(W) \) is a subgroup of \(A \). The symbol \(C^i \) denotes the subgroup of \(A \) containing \(C \) such that \(C^i/C \) is the sum of the torsion part of the maximal divisible subgroup of \(A/C \) and the \(p \)-components of \(A/C \) for all primes \(p \) not in \(S(A) \).

Lemma 3.1. With the above notations, \(C^i \) and \(A/C^i \) are in \(S(W) \).

Proof. It is obvious that \(S(A/C^i) \subseteq S(A) \). Let \(F_1 \) be a full free subgroup of \(C \). If \(F_2 \) is a free subgroup of \(A \) such that \(F_2 = F_1 \oplus F_2 \) is a full free subgroup of \(A \), then \((F_2 + C^i)/C^i \) is a full free subgroup of \(A/C^i \). Hence, \([A/C^i]/[(F_2 + C^i)/C^i] \] is isomorphic to \(A/F \), and \(A/C^i \in S(W) \).

Moreover, the middle term in the exact sequence \(0 \to C/F_1 \to C^i/F_1 \to C^i/C \to 0 \) is torsion and divisible for almost all \(p \in W \) since the groups \(C/F_1 \) and \(C^i/C \) are \(p \)-divisible groups for almost all \(p \in W \). Therefore \(C^i \in S(W) \). \(\square \)
If \(A, X \in S(W) \) then \(A \oplus X \in S(W) \), hence \(T(\Hom(A, X)) = \Hom(A, T(X)) \). Therefore every homomorphism \(A \to T(X) \) has finite image. Let
\[
A^\perp = \{ X \in S(W) \mid \mathbb{Q}\Hom(A, X) = 0 \} = \{ X \in S(W) \mid \Hom(A, X) \text{ is torsion} \}.
\]
The next results outlines the basic properties of the classes \(A^\perp \).

Lemma 3.2. Let \(W \) be a set of primes.

a) If \(A, B \in S(W) \), then \(B \in A^\perp \) if and only if the image \(S_A(B) \) is torsion.

b) If \(A_1, \ldots, A_n \in S(W) \) then \((\bigoplus_{i=1}^n A_i)^\perp = \bigcap_{i=1}^n A_i^\perp \).

c) \(A^\perp = (A \oplus \mathbb{Q})^\perp \) for all \(A \in S(W) \).

d) If \(A, B \in S(W) \) such that there exists a homomorphism \(\alpha : A \to B \) with \(B/\alpha(A) \) a torsion group, then \(A^\perp \subseteq B^\perp \).

e) If \(A \) and \(B \) are quasi-isomorphic groups in \(S(W) \) then \(A^\perp = B^\perp \). \(\square \)

The next result is based on ideas from [13, Section 4] and from [10, Proposition 5.6].

Proposition 3.3. If \(A \in S(W) \) then there exists a group \(C \in S(W) \) such that:

i) \(C \) is an epimorphic image of \(A \).

ii) \(C \) has no non-zero nilpotent quasi-endomorphisms, and

iii) \(A^\perp = C^\perp \).

Proof. If there exists an endomorphism \(\alpha \) of \(A \) such that \(\alpha(A) \) is not torsion, but \(\alpha^2 = 0 \), then \(\text{Im}(\alpha) \subseteq \text{Ker}(\alpha) \) and \(A/\text{Ker}(\alpha) \cong \text{Im}(\alpha) \) are in \(S(W) \). Moreover, \([A/\text{Im}(\alpha)]/[\text{Ker}(\alpha)/\text{Im}(\alpha)] \cong A/\text{Ker}(\alpha) \in S(W) \); and the support of the group \([A/\text{Im}(\alpha)]/[\text{Ker}(\alpha)/\text{Im}(\alpha)] \) is contained in \(S(A) \). Consequently, \(\text{Ker}(\alpha)/\text{Im}(\alpha) \) contains the torsion part of the maximal divisible subgroup of \(A/\text{Im}(\alpha) \) and the \(p \)-components of \(A/\text{Im}(\alpha) \) for all primes \(p \) not in \(S(A) \). Moreover, \(\text{Im}(\alpha)^\perp \subseteq \text{Ker}(\alpha) \). Let \(A' = A/\text{Im}(\alpha)^\perp \) and \(\pi : A \to A' \) be the canonical epimorphism.

Consider a group \(X \in S(W) \). If we can find a homomorphism \(f : A \to X \) such that \(\text{Im}(f) \) is not torsion, then \(A/\text{Ker}(f) \cong \text{Im}(f) \in S(W) \). The canonical epimorphism \(\rho : A \to A/\text{Ker}(f) \) satisfies \(\text{Im}(\rho a) = [\text{Im}(\alpha) + \text{Ker}(f)]/\text{Ker}(f) \in S(W) \). If the latter is torsion, then it has to be finite. Choose a non-zero integer \(k \) with \(\text{Im}(ka) \subseteq \text{Ker}(f) \). We observe that the torsion part of \(A/\text{Ker}(f) \) is reduced and \(S(A/\text{Ker}(f)) \subseteq S(A) \). Then, \(\text{Im}(ka)^\perp \subseteq \text{Ker}(f) \), and \(f \) induces a homomorphism \(\overline{f} : A/\text{Im}(ka)^\perp \to X \) defined by \(\overline{f}([a + \text{Im}(ka)^\perp]) = f(a) \), whose image is not torsion. On the other hand, if \((\text{Im}(\alpha) + \text{Ker}(f))/\text{Ker}(f) \) is not torsion, then consider the homomorphism \(\overline{\alpha} : A/\text{Im}(\alpha)^\perp \to \text{Ker}(A) \) defined by \(\overline{\alpha}(a + \text{Im}(\alpha)^\perp) = \alpha(a) \). Let \(\iota : \text{Ker}(\alpha) \to B' \) be the inclusion map; and consider \(f\overline{\alpha} : A/\text{Im}(\alpha)^\perp \to X \). Choose \(a' = a + \text{Im}(\alpha)^\perp \in A/\text{Im}(\alpha)^\perp \) in such a way that \(f\overline{\alpha}(ka') = 0 \) for some non-zero integer \(k \). Then, \(\text{Ker}(\alpha) \subseteq \text{Ker}(f) \). Hence, there exists \(x \in A/\text{Im}(\alpha)^\perp \) such that \(f\overline{\alpha}(x) \) has infinite order.

Consequently, \(\text{Hom}(A/\text{Im}(\alpha)^\perp, X) \) is not torsion; and \((A/\text{Im}(\alpha)^\perp)^\perp \subseteq A^\perp \). Since the other inclusion is obvious, \((A/\text{Im}(\alpha)^\perp)^\perp = A^\perp \) and \(r_0(A/\text{Im}(\alpha)^\perp) < r_0(A) \). If \(A' = A/\text{Im}(\alpha)^\perp \) has non-zero nilpotent quasi-endomorphisms, we can repeat this procedure to find a group \(A'' \in S(W) \) with \(A''^\perp = A^\perp \) and \(r_0(A'') < r_0(A') < r_0(A) \). This process has to stop after a finite number of steps, since \(r_0(A) \) is finite. Hence, there exists a group \(C \in S(W) \) which is an epimorphic image of \(A \) such that \(C^\perp = A^\perp \) and \(N(E(C)) = 0 \). This \(C \) satisfies iii) as a consequence of Lemma 2.6. \(\square \)
Theorem 3.4. The following are equivalent for a group $A \in S(W)$:

a) $A \sim B$ whenever $B \in S(W)$ with $A^\perp = B^\perp$;

b) $A \sim (\oplus_{i=1}^n A_i) \oplus \mathbb{Q}^n$, where A_i are essentially strongly indecomposable groups such that

i) $\mathbb{Q}E(A_i)$ is a division ring for all $i = 1, \ldots, n$,

ii) $\text{Hom}(A_i, A_j)$ is torsion for all $i \neq j$,

iii) If a group $C \in S(W)$ has torsion-free rank at most r and is an epimorphic image of some A_i for some i, then C is a sum of a (torsion-free) divisible group and a finite group.

Proof. a) \Rightarrow b) : We may assume that $A = A' \oplus \mathbb{Q}^r$, where A' is reduced and $A' = \oplus_{i=1}^n A_i$. If $\mathbb{Q}E(A')$ has a non-zero nilpotent element then, as in the proof of Proposition 3.3, there exists $C \in S(W)$ such that $A'^\perp = C^\perp$ and $s = r_0(A') - r_0(C) > 0$. Then $A'^\perp = (C \oplus \mathbb{Q}^{r+s})^\perp$, a contradiction. By Lemma 2.6, A satisfies conditions i) and ii). Suppose that $A_i/N = C \in S(W)$ and $r_0(C) \leq r$. Then $A'^\perp = A + C + \mathbb{Q}^{r_0(C)}$. Since $C \sim \mathbb{Q}^{r_0(C)}$ because of a), we obtain that iii) holds too.

b) \Rightarrow a) : We consider direct decompositions $A = A' \oplus \mathbb{Q}^r$ and $B = B' \oplus \mathbb{Q}^s$ with A' and B' reduced groups. We may assume $A' = \oplus_{i=1}^n A_i$, where the A_i's are essentially strongly indecomposable groups which verify i), ii) and iii). Then, $A'^\perp = A + C + \mathbb{Q}^{r_0(C)}$. Moreover, there exists a group $C \in S(W)$ as in Proposition 3.3 such that $B'^\perp = C^\perp$.

As a consequence of Lemma 2.6, we may assume that $C = \oplus_{i=1}^s C_i$, where the rings $\mathbb{Q}E(C_i)$ are division rings and $\text{Hom}(C_i, C_j)$ is torsion for all $i \neq j$. Let $j \in \{1, \ldots, s\}$. Since $\text{Hom}(C_i, C_j)$ is not torsion, there exists $f_j : A' \to C_j$ such that $\text{Im}(f_j)$ is not torsion. Because $\text{Im}(f_j) \in S(W)$, we can find a homomorphism $g : C \to \text{Im}(f_j)$ whose image is not torsion. Since $\text{Im}(f_j) \subseteq C_j$ and $g(\oplus_{i \neq j} C_i)$ is a finite group, $g(C_j)$ is not torsion either; and the restriction of g to C_j represents a non-zero quasi-endomorphism of C_j. Therefore, it has to be a quasi-epimorphism; and $\text{Im}(g)$ has finite index in C_j. Since the same holds for $\text{Im}(f_j)$, we obtain $S_{C_j}(C) \sim C$. In the same way, $S_C(A') \sim A'$. By Lemma 2.7, we may assume $A_1 \sim C_1$.

If $j \in \{2, \ldots, s\}$, then $f_j(A_1)$ is a finite group. Hence, the restriction $f_j|_{\oplus_{i=2}^n A_i} : \oplus_{i=2}^n A_i \to C_j$ is a quasi-epimorphism. Then, $S_{\oplus_{i=2}^n A_i}(\oplus_{i=2}^n C_j) \sim \oplus_{i=2}^n C_j$, and in the same way we obtain $S_{\oplus_{i=2}^n C_j}(\oplus_{i=2}^n A_i) \sim \oplus_{i=2}^n A_i$. Lemma 2.7 once more allows us to assume $A_2 \sim C_2$. We repeat these arguments for all j, and obtain $A' \sim C$ after a finite number of steps.

Suppose that B' has an endomorphism α such that $\alpha \neq \alpha^2 = 0$ in $\mathbb{Q}E(B')$. In view of the proof of Proposition 3.3, we may assume that C is an epimorphic image of $B'/\text{Im}(\alpha)^\perp$. Then $r_0(\text{Im}(\alpha)^\perp) \leq r_0(B') - r_0(C) \leq r_0(A) - r_0(C) = r$. Since we can view α as a map from B' to $\text{Im}(\alpha)^\perp$, there exists a homomorphism $\beta : A' \to \text{Im}(\alpha)^\perp$ which has a non-torsion image. Using iii), $\text{Im}(\beta) \leq B'$ is divisible. But this is not possible since B' is reduced. Therefore $\text{N}_{B'}(E(B')/T(E(B'))) = 0$. Consequently, $B' \sim C \sim A'$, and $B \sim A$. \(\square \)

References

Department of Mathematics, Auburn University, Auburn, AL 36849, U.S.A.
E-mail address: albreuf@mail.auburn.edu

"Babes-Bolyai" University, Faculty of Mathematics and Computer Science, Str. Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania
E-mail address: bodo@math.ubbcluj.ro