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Conditions under which a lattice is isomorphic to the
subgroup lattice of an abelian group

Carolina Conţiu

Abstract. In this paper, we provide necessary and sufficient conditions under

which a lattice is isomorphic to the subgroup lattice of an arbitrary abelian

group. We also give necessary and sufficient conditions for a lattice L to be
isomorphic to the normal subgroup lattice of an arbitrary group.

1. Introduction

The problem of finding necessary and sufficient conditions under which a lattice
is isomorphic to the subgroup lattice of an arbitrary group was first raised by Suzuki
in [5]. Yakovlev was the one who offered a complete solution for this problem, in his
work [6]. He characterized subgroup lattices of free groups and normal subgroups
of such groups, as well. The conclusion was a simple consequence of the fact that
every group is the epimorphic image of a convenient free group. However, his result
does not provide us information about some (basic) properties of the group. In the
same manner, Scoppola tried to characterize subgroup lattices of abelian groups
in his papers [3] and [4]. He only partially answered the question, since groups of
torsion-free rank 1 remain outside of his solution. We intend to fill this gap and
offer a complete solution to this problem.

Using the same techniques as Yakovlev, we obtain necessary and sufficient
conditions under which a lattice is isomorphic to the subgroup lattice of an abelian
group.

Our notation is mostly standard. We denote the lattice operations by ∧ (the
meet) and ∨ (the join). Let L be a complete lattice and 0 its least element. As in
[6] and [2], an element c ∈ L is said to be cyclic if the interval c/0 is a distributive
lattice satisfying the ascending chain condition. The set of cyclic elements of L is
denoted by C(L). Respecting the notations from [2], if a, b ∈ C(L), we recall the
following two subsets of C(L)

(1) a ◦ b = {x ∈ C(L) | x ∨ a = x ∨ b = a ∨ b},

(2) b ↑ a = {z ∈ C(L) | z ∈ (a ◦ b) ◦ a, z /∈ (a ◦ a) ◦ b, z ◦ z ⊆ (a ◦ (b ◦ b)) ◦ a}.

For groups, we will use the multiplicative notation. By 1 we will denote the
identity of a group, but the trivial subgroup, formed only from the identity, as well.
If G is a group, we denote by L(G) its subgroup lattice.

Our first goal is to identify the commutator subgroup in the subgroup lattice of
a free group. As in [2], we will work in a more general framework: the one of 2-free
groups. A group is said to be 2-free if is nonabelian and any two of its elements
generate a free group. The Nielsen-Schreier Theorem guarantees that every free
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group is 2-free. We recall the following simple properties of the subgroup generated
by the two elements in such a group.

Lemma 1. Let G be a 2-free group and let a, b be nontrivial elements of G.
i) If 〈a〉 ∩ 〈b〉 6= 1, the rank of 〈a, b〉 is 1, hence ab = ba.
ii) If 〈a〉 ∩ 〈b〉 = 1, 〈a, b〉 is free on {a, b}.
iii) If there exist i, j ∈ Z \ {0} such that aibj = bjai, then ab = ba.

When dealing with the subgroup lattice of a 2-free group, the subsets introduced
in (1) and (2) are as in the next Lemmas.

Lemma 2. [6, Lemma 1],[2, Lemma 7.1.7] Let G be a 2-free group and a, b ∈ G
such that a 6= 1 6= b and 〈a〉 ∩ 〈b〉 = 1. Then

〈a〉 ◦ 〈b〉 = {〈ab〉, 〈a−1b〉, 〈ab−1〉, 〈a−1b−1〉},
and these four groups are distinct.

Lemma 3. [2, Lemma 7.1.15] Let G be a 2-free group and a, b ∈ G such that
a 6= 1 6= b and 〈a〉 ∩ 〈b〉 = 1. Then

〈b〉 ↑ 〈a〉 = {〈aba−1〉, 〈a−1ba〉}.

For the sake of completeness, we shall recall the basic notions and state some
of the main results of Yakovlev. For more details you can consult [6] or [2].

Let L be a complete lattice, 0 its least element, n ∈ N and ei ∈ C(L), i ∈
{1, . . . , n}. For 0 6= a ∈ C, the n-tuple α = (A1, . . . , An) is said to be an a-complex
with respect to the system E = (e1, . . . , en) if for all i, j ∈ {1, . . . , n} with i 6= j
Ai ⊆ ei ◦ a, |Ai| = 2 and ai ◦ aj ∩ ei ◦ ej 6= ∅, for all ai ∈ Ai, aj ∈ Aj .

The set of all a-complexes with respect to E is denoted by K(a,E), while the
set of all complexes with respect to E is denoted by K(E). The 0-complex with
respect to E, ε = ({e1}, . . . , {en}), is called the trivial complex.

Multiplication of complexes can be introduced. Let L, C(L), n, E, K(E) be
as above and let α = (A1, . . . , An) and β = (B1, . . . , Bn) be complexes in K(E).
The product αβ of α and β is the set of all complexes δ = (D1, . . . , Dn) ∈ K(E)
for which there exist a, b, d ∈ C such that d ∈ a ◦ b, α ∈ K(a,E), β ∈ K(b, E),
δ ∈ K(d, E) and Di ◦Bj ∩Ai ◦ ej 6= ∅, for all i, j,∈ {1, . . . , n}.

The theorem above provides sufficient conditions for a lattice to be isomorphic
to the subgroup lattice of a group.

Theorem 4. [6, Theorem 1], [2, Theorem 7.1.6] Let L be a complete lattice in
which every element is the join of cyclic elements and suppose there exists a system
E = (e1, . . . , en) of elements ei ∈ C(L) with the following properties:

a) For each a ∈ C \ {0}, |K(a,E)| = 2.
b) If a ∈ C, α = (A1, . . . , An), α′ = (A′

1, . . . , A
′
n) ∈ K(a,E), α 6= α′, then

ei ◦A′
j ∩Ai ◦ ej 6= ∅, for all i, j ∈ {1, . . . , n}.

c) If a, b ∈ C, α ∈ K(a,E) and β ∈ K(b, E) such that α = β, then a = b.
d) For all α, β ∈ K(E), the product αβ consists of a unique complex α ∗ β.
e) For all α, β, γ ∈ K(E), (αβ)γ = α(βγ).
f) Let a ∈ C and X ⊆ C such that a ≤

∨
X and let α ∈ K(a,E). Then

there exist finitely many elements bi ∈ X and βi ∈ Ki(bi, E) such that
α ∈ ((. . . (β1β2)β3 . . .)βm−1)βm.
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In these conditions G = K(E) with operation ∗ : G×G → G given by d),

(α, β) 7→ α ∗ β, α, β ∈ G,

is a group whose subgroup lattice is isomorphic to L.

For the subgroup lattice of a 2-free group the conditions from Theorem 4 are
necessary, when additional conditions are imposed to the system E. Under these
circumstances, the basic systems were introduced.

If L is a complete lattice, a basic system of L is a family

E = (e11, . . . , e1m, e21, . . . , e2m, . . . , en1, . . . , enm),

of elements eij ∈ C(L) \ {0} with n ≥ 5, m ≥ 259, satisfying

(3) eij 6= ekl, for all i, k ∈ {1, . . . , n} and j, l ∈ {1, . . . ,m}, when (i, j) 6= (k, l),

there exist e1, . . . , en ∈ C(L) such that ei ∧ ek = 0 when i 6= k and eij ≤ ei

for all i ∈ {1, . . . , n} şi j ∈ {1, . . . ,m}.
(4)

In particular, subgroup lattices of free groups (of rank at least 2) will satisfy
assumptions of Theorem 4, for an appropriate basic system, E.

Theorem 5. [6, Theorem 5], [2, Theorem 7.1.13] Let r ≥ 2 be a cardinal
number. The lattice L is isomorphic to the subgroup lattice of a free group of rank
r if and only if L is complete, any of its elements is the join of cyclic elements, and
L has the following properties:

a) For each c ∈ C(L) \ {0}, the interval c/0 is infinite.
b) If a, b ∈ C(L) such that a∨b /∈ C(L) and if d ∈ a◦b, then d∧a = d∧b = 0.
c) There exists a basic system E of L and a subset S of C(L) such that |S| =

r,
∨

S =
∨

L and for every finite sequence b1, . . . , bs, where bi ∈ S, with
bi 6= bi+1 (i = 1, . . . , s−1) and ai ∈ L with 0 6= ai ≤ bi and αi ∈ K(ai, E),
the trivial complex ε is not contained in (. . . ((α1α2)α3) . . .)αs.

where the basic system, E, satisfies a)-f) from 4.

2. The commutator subgroup

In order to obtain the characterization of the commutator subgroup of a 2-free
group, we describe the commutator of two nontrivial elements. Note that if G is
a group we will denote by G′ its commutator subgroup, while if a, b ∈ G, we will
write [a, b] for their commutator. In this purpose, we introduce the following subset
of the set of all cyclic elements of a complete lattice.

Definition 6. Let L be a complete lattice. If x, y ∈ C(L), we define

y l x = {z ∈ C(L) |z ∈ (y ↑ x) ◦ y and ∃t1, t2 ∈ C(L), t1 6= t2, such that t1, t2 ∈ x ◦ y,

z ∈ t1 ◦ t2, x ◦ x ∩ t1 ◦ t2 = ∅}.

Lemma 7. If G is a 2-free group and a, b ∈ G such that a 6= 1 6= b and
〈a〉 ∩ 〈b〉 = 1, then

〈b〉 l 〈a〉 = {〈[a, b]〉, 〈[a−1, b]〉, 〈[a, b−1]〉, 〈[a−1, b−1]〉}.
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Proof. Note first that F = 〈a, b〉 is free on {a, b}. By the previous remark,
we have

(〈b〉 ↑ 〈a〉) ◦ 〈b〉 = {〈aba−1〉, 〈a−1ba〉} ◦ 〈b〉 = 〈aba−1〉 ◦ 〈b〉 ∪ 〈a−1ba〉 ◦ 〈b〉.

Since b 6= 1, it follows aba−1 6= 1 6= a−1ba. We also have 〈aba−1〉 ∩ 〈b〉 = 1 =
〈a−1ba〉 ∩ 〈b〉. Indeed, if 〈aba−1〉 ∩ 〈b〉 6= 1, by i) from Lemma 1, it would follow
aba−1b = baba−1. This identity cannot hold in the free group F = 〈a, b〉. Therefore,
by Lemma 2, we obtain

〈aba−1〉 ◦ 〈b〉 = {〈aba−1b〉, 〈aba−1b−1〉, 〈ab−1a−1b〉, 〈ab−1a−1b−1〉},(5)

〈a−1ba〉 ◦ 〈b〉 = {〈a−1bab〉, 〈a−1bab−1〉, 〈a−1b−1ab〉, 〈a−1b−1ab−1〉}(6)

and these eight groups are distinct.
Let t1, t2 ∈ G such that 〈t1〉 6= 〈t2〉 and 〈t1〉, 〈t2〉 ∈ 〈a〉 ◦ 〈b〉. Then 〈t1〉 =

〈aµ1bν1〉 and 〈t2〉 = 〈aµ2bν2〉, where µi, νi ∈ I = {+1,−1}, for i ∈ {1, 2} and
(µ1, ν1) 6= (µ2, ν2). We have t1 = (aµ1bν1)ε1 , while t2 = (aµ2bν2)ε2 , where ε1, ε2 ∈
{+1,−1}. We assume ε1 = ε2 = 1. The other three cases are very similar. Note
that b−1 6= a 6= b and hence t1 6= 1 6= t2.

In order to prove that 〈t1〉 ∩ 〈t2〉 = 1, we consider first case in which µ1 = µ2

or ν1 = ν2. Assume that µ1 = µ2. We must have ν1 6= ν2. Indeed, if 〈t1〉∩ 〈t2〉 6= 1,
then t1t2 = t2t1. We would have aµ1bν1aµ2bν2 = aµ2bν2aµ1bν1 , hence bν1aµ1b−ν1 =
b−ν1aµ1bν1 . This means b2ν1aµ1 = aµ1b2ν1 . Since G is a 2-free group, by iii) from
Lemma 1, we have ab = ba, contradicting the choice of a and b.

Let us investigate the case when µ1 6= µ2 and ν1 6= ν2. Suppose first 〈t1〉∩〈t2〉 6=
1. Then, we would get aµ1bν1a−µ1b−ν1 = a−µ1b−ν1aµ1bν1 . Such identity cannot
hold in the free group F .

In conclusion, we have t1 6= 1 6= t2, 〈t1〉 ∩ 〈t2〉 = 1 and by Lemma 2, we have

〈t1〉 ◦ 〈t2〉 = {〈(aµ1bν1)ε1(aµ2bν2)ε2〉 | εi ∈ I = {+1,−1}, i = 1, 2}.
Since each subgroup H ∈ (〈b〉 ↑ 〈a〉) ◦ 〈b〉 has the form 〈aγbδ1a−γbδ2〉, where

γ, δ1, δ2 ∈ {+1,−1}, we can find exactly two subgroups 〈t1〉, 〈t2〉 ∈ 〈a〉 ◦ 〈b〉 such
that H ∈ 〈t1〉 ◦ 〈t2〉, namely 〈t1〉 = 〈aγbδ1〉 and 〈t2〉 = 〈a−γbδ2〉. Note that 〈t1〉, 〈t2〉
are distinct. We are interested in the case when 〈t1〉, 〈t2〉 ∈ 〈a〉 ◦ 〈b〉 distinct and
verifying 〈a〉 ◦ 〈a〉 ∩ 〈t1〉 ◦ 〈t2〉 = ∅. Notice first that 〈a〉 ◦ 〈a〉 represents the interval
〈a〉/0 in L(G). If 〈t1〉, 〈t2〉 are as above, we shall prove that the last intersection
is empty if and only if ν1 6= ν2. If ν1 = ν2, 〈aµ1−µ2〉 = 〈aµ1bν1b−ν1a−µ2〉 ∈
〈aµ1bν1〉◦〈aµ2bν1〉 = 〈t1〉◦〈t2〉. On the other hand, if 〈aµ1bν1〉◦〈aµ2bν2〉∩〈a〉◦〈a〉 6= ∅,
at least one of the subgroups 〈aµ1bν1aµ2bν2〉, 〈b−ν1aµ2−µ1bν2〉, 〈aµ1bν1−ν2a−µ2〉,
〈b−ν1a−µ1b−ν2a−µ2〉 lies in 〈a〉 ◦ 〈a〉 and hence its generators must be contained in
〈a〉. In all cases, we must have ν1 = ν2.

We conclude now that the elements of 〈b〉 l 〈a〉 are 〈aγbδa−γb−δ〉, where γ, δ ∈
{+1,−1}. �

Lemma 8. Let G be a 2-free group and let H ≤ G. Then H contains the
commutator subgroup of G, if and only if, 〈b〉 l 〈a〉 ⊆ H/1 for all a, b ∈ G, such
that a 6= 1 6= b and 〈a〉 ∩ 〈b〉 = 1.

Proof. If G′ ≤ H and a, b ∈ G such that a 6= 1 6= b and 〈a〉 ∩ 〈b〉 = 1, then by
Lemma 7, 〈b〉 l 〈a〉 ⊆ H/1.

Conversely, suppose this condition holds and let a, b ∈ G. If 〈a, b〉 is abelian,
then it is obvious that [a, b] = 1 ∈ H. If 〈a, b〉 is not abelian, then 〈a, b〉 is free
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on {a, b}. Moreover, a 6= 1 6= b and 〈a〉 ∩ 〈b〉 = 1. By hypothesis and Lemma 7,
〈[a, b]〉 ∈ 〈b〉 l 〈a〉 ⊆ H/1. Therefore, 〈[a, b]〉 ∈ H/1 and so [a, b] ∈ H. We proved
that for any a, b ∈ G, [a, b] ∈ H, hence G′ ≤ H. �

Lemma 9. Let G be a 2-free group and let H ≤ G. Then H is the commutator
subgroup of G if and only if H =

∨
(
⋃

a,b∈G,a6=1 6=b,〈a〉∩〈b〉=1〈b〉 l 〈a〉).

Proof. It is obvious that a subgroup H is equal to the commutator subgroup
of G if and only if H =

∨
{〈[a, b]〉 | a, b ∈ G} in L(G). Let a, b ∈ G. Since G is

2-free, the identity [a, b] = 1 can hold if and only if a = 1 or b = 1 or 〈a〉 ∩ 〈b〉 6= 1.
The conclusion is a simple consequence of Lemma 7. �

3. Conditions for the subgroup lattices of abelian groups

Once the commutator subgroup was identified in the subgroup lattice of a free
group, we can formulate the characterization of subgroup lattices of free abelian
groups.

Theorem 10. Let r ≥ 2 be a cardinal number. The lattice L is isomorphic
to the subgroup lattice of a free abelian group of rank r if and only if there exist a
lattice L∗ and an element d ∈ L∗ with the following properties:

a) L∗ is a complete lattice in which every element is the join of cyclic ele-
ments. Furthermore, L∗ satisfies a)-c) from Theorem 5, for the cardinal
number r, where the basic system E satisfies in addition a)-f) from The-
orem 4.

b) d =
∨

(
⋃

a,b∈C(L∗)\{0},a∧b=0 b l a).
c) L ∼= 1∗/d, where 1∗ is the greatest element of L∗.

Proof. Suppose L ∼= L(G), where G is a free abelian group of rank r. It is
well known that G is isomorphic with F/F ′, where F is the free group of rank
r, r ≥ 2 and F ′ its commutator subgroup. Thus, if L∗ = L(F ), by Theorem 5,
condition a) is satisfied. Moreover, taking d = F ′, the commutator subgroup of F ,
by Lemma 9, condition b) holds, while the isomorphism L ∼= 1∗/d is obvious.

Conversely, suppose there exists L∗ and d ∈ L∗ satisfying conditions a)-c). By
a) and Theorem 5, there exists a free group of rank r such that L(F ) ∼= L∗. Let
N be the image of d under this isomorphism. Moreover, by b) and Lemma 9 we
conclude that N is the commutator subgroup of F . Finally, c) implies L ∼= L(F/N),
where F/N is the free abelian group of rank r. �

Remark 11. The Theorem above characterizes the subgroup lattice of a free
abelian group of rank r ≥ 2, finite or infinite. The subgroup lattice of the free
abelian group of rank 1 is well known. This is the T∞ lattice, with the set of
natural numbers as underlying set, ordered by

a ≤′ b ⇔ b divides a.

Of course, if a, b ∈ T∞, a ∨ b is the greatest common divisor and a ∧ b is the least
common multiple of a and b.

We are now able to give the desired characterization.

Theorem 12. The lattice L is isomorphic to the subgroup lattice of some
abelian group if and only if L is isomorphic to a principal filter of the T∞ lattice or
there exists a lattice L∗ and two elements d, e ∈ L∗ such that:



a) L∗ and d ∈ L∗ satisfies a),b) from Theorem 10.
b) e ∈ 1∗/d, where 1∗ is the greatest element of L∗ and L ∼= 1∗/e.

Proof. Suppose first L ∼= L(G), where G is an abelian group. Then there
exists H a free abelian group and N a subgroup of H such that G ∼= H/N . If H is
of rank 1, then L(G) is isomorphic with the principal filter generated by N in T∞.
Otherwise if the rank of H is at least 2, from Theorem 10 we deduce the existence
of a lattice L∗ and an element d ∈ L∗ such that condition a) from our Theorem
is satisfied. Moreover, we have L(H) ∼= 1∗/d. If e is the image of N under this
isomorphism, e ∈ 1∗/d and one can easily observe that L(H/N) ∼= 1∗/e.

Conversely, if 1/N is a principal filter of T∞, than it is obvious that 1/N ∼=
L(Z/N), which is of course an abelian group.

Suppose now there exists L∗ and d, e ∈ L∗ satisfying conditions a) and b). By
a) and Theorem 10, we conclude that the interval 1∗/d of L∗ is isomorphic with
the subgroup lattice of a free abelian group of rank r ≥ 2. Let H be this group.
We have L(H) ∼= 1∗/d. Let N be the image of e ∈ 1∗/d under this isomorphism.
From c) it follows that L ∼= L(H/N).

�

Another direct consequence of Yakovlev’s Theorem is the characterization of
the normal subgroup lattice of a group. If G is a group, we shall denote by Norm(G)
its normal subgroup lattice.

Let L be a complete lattice. We say that an element d ∈ L is normal in L
and write d E L, every time b ↑ a ⊆ d/0 holds for each a, b ∈ C(L) \ {0} such that
a ∧ b = 0 and b ≤ d. In [6] the author proved that the normal elements in the
subgroup lattice of a 2-free group are exactly the normal subgroups of that group.

Theorem 13. The lattice L is isomorphic to the normal subgroup lattice of a
group if and only if there is a lattice L∗ and an element d ∈ L∗ such that:

a) L∗ is a complete lattice in which every element is the join of cyclic ele-
ments. Furthermore, L∗ satisfies a)-c) from Theorem 5, for some cardinal
number r ≥ 2 where the basic system E satisfies in addition a)-f) from
Theorem 4.

b) d E L∗.
c) {d′ ∈ L∗ | d′ E L∗, d ≤ d′} is a complete sublattice of 1∗/d, isomorphic

with L.

Proof. Assume first that there exists a group G such that L ∼= Norm(G).
Hence, there exists a cardinal number r ≥ 2, a free group F of rank r and a normal
subgroup N of F such that G ∼= F/N . If tacking L∗ = L(F ) and d = N , it is
obvious that L(G) ∼= 1∗/d. Furthermore, conditions a) and b) are satisfied. On
the other hand {d′ ∈ L∗ | d′ E L∗, d ≤ d′} = {H ≤ F | H E F,N ⊆ H} forms
a complete sublattice of 1∗/d and by the correspondence theorem it is isomorphic
with {H/N | H/N E F/N} = Norm(F/N) ∼= Norm(G).

Conversely, suppose there exists a lattice L∗ and an element d ∈ L∗ satisfying
conditions a)-c). By a) and Theorem 5, there exists a free group F of rank r, r ≥ 2,
such that L∗ ∼= L(F ). Let N be the image of d under this isomorphism and hence
N EF , by b). But then, 1∗/d ∼= L(G), where G = F/N . On the other hand, by the
correspondence theorem, {d′ ∈ L∗ | d′ E L∗, d ≤ d′} ∼= {H ≤ F | H E F,N ⊆ H} is
isomorphic with Norm(F/N) = Norm(G). Finally, L ∼= Norm(G), by c). �
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